Disciplina | Tópicos Especiais Em Biotecnologia: Neuroproteção Experimental por Produtos Naturais Da Amazônia |
Código | BTC-014.52 |
Tipo | Optativa |
Nº de créditos | 2 |
Carga Horária | 30 Teorica / 0 Prática |
Período | 02/2021 |
Nº de Vagas | 10 |
Turma | 01 - PA |
Período das Aulas | 06/08/2021 a 20/08/2021 |
Observações | 06 - 20/08 14 - 17h WEBCONFERENCE |
Professores | |
Horários | |
Ementa | |
A presente disciplina descreve tópicos importantes em neuroproteção com ênfase no tratamento experimental com produtos naturais da Amazônia. Primeiramente, descreve-se a fisiopatologia geral das desordens neurais agudas (acidente vascular encefálico, trauma cerebral e da medula espinhal). Os principais eventos patológicos são apresentados, incluindo os padrões de morte neuronal, ativação glial e neuroinflamação. Os modelos experimentais destas doenças são discutidos. Finalmente descreve-se os dados disponíveis mostrando que o tratamento com produtos naturais da Amazônia induzem neuroproteção em modelos experimentais Conteúdo programático: 1. Introdução à Neuropatologia Experimental. Modelos experimentais de doenças do sistema nervosoi central 2. Fisiopatologia das desordens neurais agudas 3. Neuroinflamação e doenças do sistema nervoso central 4. Modelos experimentais de doenças do sistema nervoso central 5. Neuproteção para doenças do sistema nervoso central 6. Indução de neuroproteção experimental por produtos naturais da Amazônia | |
Bibliográfia | |
BIBLIOGRAFIA Block ML, Zecca L, Hong JS. 2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57-69. Buchanan MM, Hutchinson M, Watkins LR, Yin H. 2010. Toll-like receptor 4 in CNS pathologies. Journal of neurochemistry 114:13-27. Burguillos MA, Deierborg T, Kavanagh E, Persson A, Hajji N, Garcia-Quintanilla A, Cano J, Brundin P, Englund E, Venero JL and others. 2011. Caspase signalling controls microglia activation and neurotoxicity. Nature 472:319-324. Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, Hall CE, Switzer JA, Ergul A, Hess DC. 2010. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41:2283-2287. Griffiths M, Neal JW, Gasque P. 2007. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol 82:29-55. Hamby AM, Suh SW, Kauppinen TM, Swanson RA. 2007. Use of a poly(ADP-ribose) polymerase inhibitor to suppress inflammation and neuronal death after cerebral ischemia- reperfusion. Stroke 38:632-636. Hayakawa K, Mishima K, Nozako M, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Iwasaki K, Fujiwara M. 2008. Delayed treatment with minocycline ameliorates neurologic impairment through activated microglia expressing a high-mobility group box1-inhibiting mechanism. Stroke 39:951-958. Heldmann U, Mine Y, Kokaia Z, Ekdahl CT, Lindvall O. 2011. Selective depletion of Mac-1- expressing microglia in rat subventricular zone does not alter neurogenic response early after stroke. Experimental neurology. Hewlett KA, Corbett D. 2006. Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia. Neuroscience 141:27-33. YH. 2009. Minocycline and neurodegenerative diseases. Behav Brain Res 196:168-179. Kreutzberg GW. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312-318. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J. 2007. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596- 2605. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Lehnardt S. 2010. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58:253-263. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR. 2007. Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K. 2006. Microglia provide neuroprotection after ischemia. Faseb J 20:714-716. Neumann J, Sauerzweig S, Ronicke R, Gunzer F, Dinkel K, Ullrich O, Gunzer M, Reymann KG. 2008. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 28:5965-5975. Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314-1318. Perry VH, Nicoll JA, Holmes C. 2010. Microglia in neurodegenerative disease. Nature reviews Neurology 6:193-201. Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM. 2002. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. Journal of Neuropathology and Experimental Neurology 61:623-633. Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. 1999. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158:351-365. Streit WJ. 2002. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133-139. Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen SE, Ekdahl CT, Kokaia Z and others. 2009. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57:835-849. Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM. 2004. The promise of minocycline in neurology. Lancet Neurol 3:744-751. Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. 1999. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proceedings of the National Academy of Sciences of the United States of America 96:13496-13500. |