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RESUMO

A malária é uma doença potencialmente fatal. Sua letalidade está associada a elevada 

concentração de radicais livres indutores de estresse oxidativo no organismo hospedeiro. O 

estresse  oxidativo  pode  ser  prevenido  pela  ação  de  antioxidantes.  Para  confirmar  esta 

hipótese, avaliamos os efeitos do fitonutriente licopeno (LYC) sobre as alterações oxidativas 

induzidas pelo Plasmodium berghei (Pb) em camundongos e comparamos aos efeitos da N-

acetilcisteína (NAC). Para isso, camundongos Balb/c foram pré-tratados com uma dose de 

3,11mg/kg de peso corporal/dia de LYC ou 62mg/kg pc/dia de NAC. Vinte e quatro horas 

depois, os animais foram infectados pela injeção intraperitoneal de 106 hemácias parasitadas. 

Os tratamentos continuaram diariamente até o dia anterior aos dias 1, 4, 8 ou 12 de infecção. 

Após  esses  períodos  a  parasitemia  e  a  taxa  de  mortalidade  foram avaliadas.  Os  animais 

sobreviventes  foram submetidos  a  eutanásia  e  foram coletados  o  cérebro  e  pulmões  para 

análises  bioquímica  de  substâncias  reativas  ao  ácido  tiobarbitúrico  (TBARS),  capacidade 

antioxidante pela inibição dos radicais ABTS (AC-ABTS) e DPPH (AC-DPPH), ácido úrico 

(UA)  e  óxido  nítrico  (NO).  Os  resultados  demonstraram  um  aumento  progressivo  da 

parasitemia de 0,6%, 5,6%, 15,8% e 40% nos dias 1, 4, 8 e 12, respectivamente, e taxa de 

mortalidade elevada de 53% e 55% no 8° e 12° dia pós-infecção, respectivamente. As mortes 

ocorreram devido  ao  estresse  oxidativo,  que  foi  confirmado  pelo  aumento  dos  níveis  de 

TBARS,  AC-ABTS,  AC-DPPH,  UA  e  NO  no  cérebro  e  pulmões  dos  camundongos.  O 

tratamento com LYC diminuiu a progressão da parasitemia para 19% e a taxa de mortalidade 

para 20% no 12º dia pós-infecção. O LYC também foi capaz de reduzir os níveis de TBARS, 

UA e NO comparado aos grupos Pb (p< 0,0001) e NAC+Pb (p<0,0001), atingindo valores 

semelhantes aos animais Sham. O LYC é um fitonutriente que impede o estresse oxidativo, 

devido a sua poderosa ação antioxidante.  Esta ação pode ser a principal  responsável  pela 

redução da parasitemia e da taxa de mortalidade. Portanto, o LYC foi eficaz contra a infecção 

e alterações oxidativas induzidas por Pb, devido sua ação antioxidante. Assim, o LYC pode 

representar  uma  estratégia  terapêutica  promissora  para  a  diminuição  da  morbidade  e 

mortalidade causadas pela malária.



Palavras chave: Antioxidante; Estresse oxidativo; Licopeno; Malária; Suplemento.
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ABSTRACT

Malaria  is  a  potentially  fatal  disease.  Its  lethality  is  associated  with  a  high 

concentration of free radicals  that  induce oxidative stress in the host organism. Oxidative 

stress  can  be  prevented  by  the  action  of  antioxidants.  To  confirm  this  hypothesis,  we 

evaluated the effects of the phytonutrient lycopene (LYC) on the oxidative changes induced 

by  Plasmodium berghei (Pb)  in  mice  and compared  it  to  the  effects  of  N-acetylcysteine 

(NAC). For this, Balb/c mice were pretreated with a dose of 3.11mg/kg body weight/day of 

LYC or 62mg/kg bw/day of NAC. Twenty-four hours later,  the animals were infected by 

intraperitoneal injection of 106 parasitized red blood cells. Treatments continued daily until 

the day before days 1, 4, 8, or 12 of infection. After these periods, parasitemia and mortality 

rate were evaluated. The surviving animals were euthanized, and the brain and lungs were 

collected  for  biochemical  analysis  of  thiobarbituric  acid  reactive  substances  (TBARS), 

antioxidant capacity by inhibition of ABTS radicals (AC-ABTS) and DPPH (AC-DPPH), uric 

acid (UA) and nitric oxide (NO). The results showed a progressive increase in parasitemia of 

0.6%, 5.6%, 15.8%, and 40% on days 1, 4, 8, and 12, respectively, and an increased mortality 

rate  of  53% and  55% on  the  8th  and  12th  post-infection  days,  respectively.  The  deaths 

occurred due to oxidative stress, which was confirmed by increased levels of TBARS, AC-

ABTS, AC-DPPH, UA, and NO in the brains and lungs of the mice. Treatment with LYC 

decreased the progression of parasitemia to 19% and the mortality rate to 20% on the 12th day 

post-infection. LYC was also able to reduce the levels of TBARS, UA, and NO compared to 

the Pb (p<0.0001) and NAC+Pb (p<0.0001) groups, reaching values similar to those of Sham 

animals. LYC is a phytonutrient that prevents oxidative stress due to its powerful antioxidant 

action. This action may be the main responsible for the reduction of parasitemia and mortality 

rate. Therefore, LYC was effective against infection and Pb-induced oxidative alterations due 

to  its  antioxidant  action.  Thus,  LYC may  represent  a  promising  therapeutic  strategy  for 

reducing morbidity and mortality caused by malaria.

Keywords: Antioxidant; Oxidative stress; Lycopene; Malaria; Supplement.
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1 INTRODUÇÃO

A malária continua a ser um problema de saúde pública mundial. Em 2021, foram 

estimados cerca de 247 milhões de casos e 619 mil óbitos no mundo em decorrência desta 

doença. Atualmente, a malária é endêmica em 84 países, principalmente em áreas tropicais e 

subtropicais onde  afetam  principalmente  comunidades  pobres,  especialmente  mulheres  e 

crianças (WHO, 2022). Há décadas, essa doença causa consequências devastadoras na saúde, 

sociais e econômicas para mais de um bilhão de pessoas. Destaca-se que a falta de estratégias 

de  prevenção  eficientes,  como  medicamentos  e/ou  vacinas,  entre  outros,  contribui 

significativamente para este quadro.

Dentre as espécies de  Plasmodium que causam malária em humanos, o  P. vivax é o 

mais incidente no mundo e implicado pelas recaídas da doença (NAIN et al., 2022), enquanto 

o P. falciparum, espécie responsável por promover a forma grave da doença, é o mais letal 

(HOWES  et  al., 2016).  Estudos  sobre  a  patogênese  da  malária,  tem  discutido  que  as 

manifestações clínicas agudas ou graves que podem levar a morte, são frequentemente uma 

consequência do estresse oxidativo sistêmico provocado pelo parasito (PERCÁRIO  et al., 

2012).

Na malária, o estresse oxidativo se propaga no momento em que o Plasmodium invade 

os  eritrócitos  e  consome  a  hemoglobina  intraeritrocitária,  para  formar  aminoácidos 

necessários para o seu desenvolvimento (TEKWANI e WALKER, 2005). Contudo, durante o 

metabolismo  da  hemoglobina  que  ocorre  no  vacúolo  digestivo  do  parasito,  a 

ferroprotoporfirina é danificada, levando a oxidação do seu átomo de ferro ferroso (Fe2+) a 

ferro férrico (Fe3+), originando a ferriprotoporfirina IX, que por ser altamente reativa, induz 

uma cascata de formação de espécies reativas de oxigênio e nitrogênio (ERON), incluindo os 

radicais:  superóxido  (O2
•−),  peróxido  (ROO•),   hidroxila  (OH•),  oxido  nítrico  (NO), 

peroxinitrito  (ONOO−)  altamente  reativos  (BUTZLOFF  et  al., 2012;  NARSARIA  et  al., 

2012).

As ERON, por sua vez, favorecem uma serie de reações oxidativas que podem levar a 

diminuição  do  sistema  de  defesa  antioxidante  (ASAOLU  e  IGBAAKIN,  2009).  Nesse 

contexto, foi evidenciado que indivíduos infectados pelo P. falciparum e que vivem em áreas 

endêmicas,  são  mais  susceptíveis  às  complicações  da  doença,  por  apresentarem  baixas 

concentrações  plasmáticas  de  vários  micronutrientes,  incluindo  vitamina  A  e  zinco,  e 
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antioxidantes como, ácido ascórbico (vitamina C), carotenoides e vitamina E (ADELEKAN 

et al., 1997; NUSSENBLATT et al., 2002). A consequente exposição da célula hospedeira ao 

estresse oxidativo leva ao dano celular, incluindo redução da deformabilidade dos glóbulos 

vermelhos, ruptura da membrana e hemólise (HALDAR et al., 2007; SRIVASTAVA et al., 

2015; KUMAR et al., 2018), contribuindo significativamente para complicações da doença 

como acidose metabólica, anemia grave e falência de múltiplos órgãos (BECKER et al., 2004; 

PERCÁRIO et al., 2012).

Por outro lado, as vitaminas A e E, carotenoides e zinco, têm papéis essenciais no 

sistema antioxidante e estão implicados na resistência da infecção por malária (SHANKAR e 

PRASAD, 1998; DAS et al., 1996). Iribhogbe et al. (2013) evidenciaram que a vitamina A o 

zinco e o selênio, podem interferir na progressão das reações oxidativas durante a malária em 

camundongos  infectados  pelo  P.  berghei (IRIBHOGBE  et  al., 2013).  Adicionalmente, 

estudos  sugeriram que a  suplementação  periódica  de  vitamina  A  e  zinco  pode reduzir  a 

incidência de episódios febris e a parasitemia, servindo como uma estratégia eficaz e de baixo 

custo  para  diminuir  a  morbidade  por  P.  falciparum em  crianças  em  idade  pré-escolar 

(SHANKAR et al., 1999, 2000). Outros estudos também apoiam a hipótese de que o consumo 

de carotenoides pelo organismo hospedeiro aumenta durante a infecção da malária, sugerindo 

que o estado nutricional  é  um fator  modulador  importante  na malária  (DAS  et al., 1996; 

NUSSENBLATT et al., 2002).

Entre os carotenoides, o licopeno (LYC) é o antioxidante com maior potencial para 

eliminar  ERON, superando o precursor de vitamina A β-caroteno ou o α-tocoferol,  sendo 

eficaz na manutenção do equilíbrio oxidativo, devido a sua estrutura molecular possuir 11 

duplas  ligações  conjugadas  que  aumentam  sua  capacidade  sequestradora  e  favorecem  a 

estabilização de elétrons desemparelhados dos radicais livres por ressonância (BOHM et al., 

2002; BRITO et al.,  2019). Também, é reconhecido pela capacidade de induzir a síntese de 

enzimas antioxidantes, como superóxido dismutase (SOD), glutationa peroxidase (GSH-Px) e 

catalase (CAT; MILLER et al., 1996; ANGUELOVA e WARTHESEN, 2000).

O LYC é um nutriente encontrado em muitas frutas e vegetais como tomate, mamão, 

melancia,  pimentão  vermelho,  manga,  goiaba,  dentre  outros,  e  é  responsável  pela 

pigmentação vermelho-alaranjado nesses alimentos. Após seu consumo, o LYC mostrou ser 

prontamente absorvido pelo corpo, podendo ser encontrado no sangue, leite materno, próstata, 

testículo e pele (STAHL et al., 1992; AUST et al., 2005; RAO e RAO, 2007), o que pode 

indicar seu grande significado biológico no sistema de defesa humano.
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De fato, sugeriu-se que o aumento da concentração plasmática do LYC está associado 

a  uma eliminação  mais  rápida  da  parasitemia  em crianças  infectadas  pelo  P.  falciparum 

(METZGER et al., 2001). Adicionalmente, um estudo in vitro destacou o efeito citotóxico do 

LYC sobre o P. falciparum, através do aumento da produção de radicais livres no citoplasma 

do P. falciparum, levando a perda significativa da funcionalidade mitocondrial e do potencial 

de  membrana  e  prevenindo  a  liberação  dos  merozoítos  dos  eritrócitos  hospedeiros 

(AGARWAL et al., 2014). Portanto, o efeito  in vitro observado do LYC no crescimento do 

parasita  pode  ter  relevância  com a  eliminação  da  parasitemia  relatada  no  estudo  in  vivo 

anterior (METZGER et al., 2001). 

Este trabalho, fornece evidências de que o LYC é um antioxidante potente em uma 

variedade de problemas  relacionados  a  saúde humana,  e  ainda  é  eficaz  contra  a  infecção 

induzida  por  P.  berghei  in  vivo,  e  reforça  o  papel  importante  da  suplementação  de 

micronutrientes na prevenção da malária e outras doenças.

1. 2 OBJETIVOS

1.2.1 Objetivo geral

Avaliar os efeitos do antioxidante licopeno sobre a taxa de mortalidade, parasitemia, e 

alterações oxidativas induzidas pelo Plasmodium berghei em camundongos.

1.2.2 Objetivos específicos

Avaliar  os  efeitos  do  licopeno  sobre  a  taxa  de  mortalidade  e  parasitemia  de 

camundongos infectados pelo P. berghei;

Avaliar os efeitos do licopeno em marcadores laboratoriais da peroxidação lipídica em 

camundongos infectados pelo P. berghei;

Avaliar os efeitos do licopeno sobre a atividade antioxidante total de camundongos 

infectados pelo P. berghei;

Verificar a existência de possíveis correlações entre os parâmetros avaliados.
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2 CAPITULO I: ARTIGO DE REVISÃO

ARTIGO DE REVISÃO PUBLICADO NA REVISTA NUTRIENTS

Varela ELP, Gomes ARQ, da Silva Barbosa Dos Santos A, de Carvalho EP, Vale VV, Percário 

S. Potential benefits of lycopene consumption: Rationale for using it as an adjuvant treatment 

for  malaria  patients  and  in  several  diseases.  Nutrients. 14;14(24):5303,  2022.  doi: 

10.3390/nu14245303. PMID: 36558462; PMCID: PMC9787606.
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Review
Potential Benefits of Lycopene Consumption: Rationale for Using It as 
an Adjuvant Treatment for Malaria Patients and in Several Diseases
Everton Luiz Pompeu Varela1,2,*, Antônio Rafael Quadros Gomes1,3, Aline da Silva Barbosa dos 

Santos1,2, Eliete Pereira de Carvalho1,2, Valdicley Vieira Vale3 and 
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Abstract:  Malaria is a disease that affects thousands of people around 
the world every year. Its pathogenesis is associated with the production 
of  reactive  oxygen  and  nitrogen species  (RONS)  and  lower  levels  of 
micronutrients  and  antioxidants.  Patients  under  drug  treatment  have 
high levels  of  oxidative  stress  biomarkers  in  the  body tissues,  which 
limits the use of these drugs. Therefore, several studies have suggested 
that RONS inhibition may represent an adjuvant therapeutic strategy in 
the treatment of these patients by increasing the antioxidant capacity of 
the  host.  In  this  sense,  supplementation with  antioxidant  compounds 
such as zinc, selenium, and vitamins A, C, and E has been suggested as 
part of the treatment. Among dietary antioxidants, lycopene is the most 
powerful antioxidant among the main carotenoids. This review aimed to 
describe the main mechanisms inducing oxidative stress during malaria, 
highlighting the production of RONS as a defense mechanism against 
the  infection  induced  by  the  ischemia-reperfusion  syndrome,  the 
metabolism of the parasite,  and the metabolism of antimalarial drugs. 
Furthermore,  the  effects  of  lycopene  on  several  diseases  in  which 
oxidative  stress  is  implicated  as  a  cause  are  outlined,  providing 

information  about  its  mechanism  of  action,  and  providing  an  evidence-based  justification  for  its 
supplementation in malaria.
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1. Introduction
Malaria is currently endemic in 85 countries and is found on most continents, but it is mostly  

confined to tropical and subtropical regions. It is noteworthy that repeated Plasmodium infection does 
not result in complete immunity, so populations in endemic regions are continuously susceptible to 
infection, transmission, morbidity, and mortality. Moreover, the lack of effective prevention strategies, 
including medications and/or vaccines, contributes significantly to this scenario. In 2020, there were 
241 million cases, and 627,000 people died worldwide from the disease [1]. Almost all malaria-related 
deaths result from Plasmodium falciparum infection.

The  pathophysiological  mechanisms  involved  in  the  disease  are  complex  and  multifactorial. 
Inflammatory molecules are greatly involved and related to several cell signaling pathways. Indeed,  
after  Plasmodium infection,  an  inflammatory  reaction  may  be  observed,  with  a  predominance  of 
neutrophils, lymphocytes, and monocytes, which are attracted by the presence of the parasite in the 
body  [2–4]. Furthermore, leukocytes induce the expression of proinflammatory cytokines, including 
interleukin (IL)-1β, IL-2, IL-6, IL-17, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α), that 
play an important role in the protection against malaria and elimination of parasites, by inducing 
monocyte  phagocytosis,  favoring  the  elimination  of  parasitized  erythrocytes  and  limiting  the 
progression of uncomplicated malaria to malaria with serious complications [5–7].

Additionally,  in  the  recovery  phase,  regulatory  cytokines,  including  IL-4,  IL-10,  chemokines,  
including IL-8, macrophage inflammatory protein (MIP)-1α, MIP-1β, macrophage colony-stimulating 
factor  (M-CSF),  and  granulocyte-macrophage  colony-stimulating  factor  (GM-CSF)  [8–11] and 
transforming growth factor-β, neutralize the pro-inflammatory response by inhibiting the production 
of T helper 1 cytokines, contributing to the elimination of the parasite and reducing the risk of serious  
clinical complications [12–14].

However,  a  disturbance  in  the  balance  of  pro-  and  anti-inflammatory  cytokines  and  the 
underlying inflammatory process has been implicated in the pathogenesis of cerebral malaria and is 
associated with disease severity and death [11,15,16]. Such disturbance may be promoted by oxidative 
stress, which is known to intensify inflammation through tissue destruction and the release of danger 
signals  by necrotic cells  [17,18].  According to Ty et  al.  [19], reactive  oxygen and nitrogen species 
(RONS) play an important role in triggering inflammation in malaria since these are produced in 
excess during infection and are potent inducers of inflammatory cytokines, suggesting the important 
role of oxidative stress in the pathophysiology of the disease [19–21].

Given the tropism of Plasmodium species for tissues such as blood [22], important systemic effects, 
including the induction of cytokines and RONS, which are closely associated with anemia, paroxysms, 
cerebral malaria, among other symptoms of systemic infection, are marked during the disease [20,23–
25].

The  oxidative  changes  occurring  during infection  that  led to  oxidative  stress  are  a  result  of  
several  different  mechanisms,  including  the  degradation  of  hemoglobin  by  the  malaria  parasite, 
producing redox-active by-products,  such as free heme and hydrogen peroxide (H2O2)  [26].  These 
radicals  stimulate  a series  of  oxidative reactions,  leading to a decrease in the antioxidant  defense 
system, through the consumption of micronutrients, including vitamin A, zinc, ascorbic acid (vitamin 
C), α-tocopherol (vitamin E), and carotenoids, among others [27]. In fact, in malaria-endemic areas, P.  
falciparum-infected  individuals  present  lower  plasma  concentrations  of  various  micronutrients 
compared to healthy individuals [28].

On the other hand, these micronutrients play essential roles in the antioxidant system and are 
implicated in resistance to malaria infection [29]. In this sense, it has been shown that vitamin A, zinc, 
and selenium can interfere with the progression of oxidative reactions during malaria in mice infected 
with P. berghei [30]. Additionally, studies have suggested that the periodic supplementation of vitamin 
A and zinc can reduce the incidence of febrile episodes and parasitemia, being an effective and low-
cost strategy to decrease P. falciparum morbidity in preschool children [31,32].

Other studies also support the hypothesis that the use of carotenoids by the host increases during 
malaria, suggesting that the nutritional status is an important modulating factor in the disease [28,33]. 
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In this regard, it has been suggested that increased plasma lycopene concentration is associated with 
faster resolution of parasitemia in children infected with P. falciparum, being effective in maintaining 
the oxidative balance [34].

Considering the important involvement of oxidative stress mechanisms in malaria and, therefore, 
the  potential  of  antioxidant  nutrients  in  preventing  it,  in  the  present  revision,  we  intend  to 
demonstrate the beneficial effects of lycopene supplementation in malaria patients and, consequently, 
in several other diseases mediated by oxidative stress.

2. Oxidative Stress
Oxidative stress occurs when RONS overwhelm cellular defenses, causing damage to proteins, 

membranes, and deoxyribonucleic acid (DNA)  [35]. It  is the result  of a disturbance in the balance 
between RONS and antioxidants in favor of RONS [36]. Under physiological conditions, endogenous 
RONS are generated by enzymatic systems, including nicotinamide adenine dinucleotide phosphate 
oxidase (NADPH oxidase) and nitric oxide synthase (NOS), as a by-product of mitochondrial electron 
transport chain reactions (Figure 1) or by metal-catalyzed oxidation [37,38].

Figure 1. Production of reactive oxygen species from the transfer of electrons from the electron transport chain.

In this regard, the free radical superoxide (O2
•-), resulting from the monoelectronic reduction of 

oxygen, is considered the main precursor of other RONS since, after its formation, it can react with 
other molecules giving rise to other free radicals, such as hydroxyl (OH•), alkoxyl (RO-), and peroxyl 
(ROO-), in addition to other molecules that do not meet the definition of free radicals, but take part of  
oxidative reactions in a meaningful way, such as H2O2. Nitric oxide (NO) is among the molecules that 
can react with O2

•-, and the reaction between them generates the free radical peroxynitrite (ONOO -). 
Additionally, O2

•- can be unmuted to form H2O2, and it can be broken down through Fenton or Haber-
Weiss reactions, leading to the generation of OH• [39,40].

These RONS-generating chain reactions are initially controlled by antioxidant defense systems 
that  act  quickly,  neutralizing any molecule  that  can potentially develop into a RONS or any free  
radical with the ability to induce the production of other pro-oxidants [41]. Three enzymes are critical 
in this process,  including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GSH-Px).  These  enzymes,  respectively,  unmute  O2

•- and  break  down  H2O2 or  hydroperoxides 
(ROOH) into harmless molecules such as H2O, alcohol, and oxygen (O2) [42]. The class of endogenous 
antioxidants also includes glutathione reductase, and reduced glutathione (GSH), in addition to small  
molecules such as coenzyme Q and uric acid (UA), among others [43]. Since they can be synthesized 
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by the body in response to oxidative aggression, we nominate endogenous antioxidants as mobilizable  
antioxidant molecules.

However, in diseases in which oxidative stress is a pathogenic mediator, including cancer and 
malaria, mobilizable antioxidants are not sufficient to maintain cell homeostasis due to the decreased 
synthesis of antioxidant enzymes and increased use of these antioxidants, among other factors [44–46].

In these cases, supplementation with dietary antioxidants is essential to maintain optimal cell  
function. Vitamins, including vitamins E and C, phenolic substances, such as flavonoids, resveratrol, 
and carotenoids,  including  β-carotene  and lycopene,  and drugs,  such  as  N-acetylcysteine  (NAC), 
among others, belong to this category [47,48]. Dietary antioxidants neutralize or eliminate RONS by 
binding or donating electrons to pro-oxidants, and in the process, they become free radicals but with 
less  harmful  effects.  These  “new  radicals”  are  more  easily  neutralized  and  rendered  completely 
harmless by other antioxidants in this group [49]. Thus, this class of antioxidant molecules can also be 
referred to as consumable antioxidants, as they are consumed in the face of oxidative aggression. Thus, 
consumable and mobilizable antioxidants act synergistically to fight the excessive increase in RONS, 
which can be a primary cause or a secondary complication of various diseases  [50,51], as in malaria 
[52,53].

3. Oxidative Stress in Malaria
In  malaria,  oxidative  stress  is  caused  by  four  main  mechanisms:  a  host  defense  against 

Plasmodium infection; ischemia-reperfusion syndrome; direct production of oxidative species by the 
parasite; and the metabolism of antimalarial drugs [54].

3.1. Oxidative Stress as a Host Defense Mechanism
RONS  are  essential  for  several  physiological  functions  of  the  body,  including  cell  survival, 

growth, proliferation, and differentiation, as well as the immune response [55,56].
As for the immune response, RONS are important for phagocytes,  including neutrophils and 

monocytes/macrophages, which are highly activated during malaria, helping these cells phagocytize 
and destruct parasites [57,58].

In this sense, the body’s defense system responds to infection by primarily recruiting neutrophils  
[59]. When neutrophils engulf the parasites, they induce a respiratory burst (Figure 2), in which O2 

enzymatically reacts with NADPH oxidase present in the plasma and the phagosomal membrane of 
neutrophils,  forming O2

•- [4].  O2
•- and its  derivatives  H2O2 and OH•,  when released by activated 

neutrophils in the phagosome, are essential to kill ingested pathogens [60].
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Figure 2. Oxidative stress as a host defense mechanism in response to infection by Plasmodium sp.

In  addition,  activated  neutrophils  produce  cytokines,  such  as  GM-CSF  and  M-CSF,  and 
chemokines, including MIP-1α and MIP-1β, which attract these cells and are essential for monocyte 
mobilization [61]. These leukocytes engulf and kill the parasites through the oxidative action of O 2

•-, 
which  is  generated in  the  same way as  in  neutrophils,  as  well  as  by the  action of NO, which is 
produced by the macrophage from the reaction of NOS with L-arginine [62,63]. Additionally, the NO 
and O2

•- generated react to form other RONS, such as ONOO-, intensifying the cytotoxicity directed 
against the parasites [64].

Furthermore,  neutrophil  and  macrophage  myeloperoxidase  is  activated  and  uses  H 2O2 as  a 
substrate to produce hypochlorous acid, a highly bactericidal compound [65,66]. On the other hand, 
phagocytosis  and the  consequent  action  of  RONS,  including  O2

•- and NO,  as  well  as  other  toxic 
products, can exacerbate the condition due to rupture of the parasitized erythrocytes, during which 
normal uninfected erythrocytes can also be destroyed, stimulating cytoadherence and, consequently, 
potentially blocking blood flow, causing ischemia and anemia [67,68].

3.2. Oxidative Stress Due to Ischemia-Reperfusion Syndrome
In  individuals  with  malaria,  severe  anemia  induces  microvascular  dysfunction,  leading  to 

recurrent episodes of initial restriction of blood supply to organs, which can lead to ischemia and 
nutrient  and oxygen deprivation, followed by subsequent restoration of concurrent perfusion and 
reoxygenation [54,69]. This process is called ischemia-reperfusion syndrome and can occur in malaria 
due to the sequestration of parasitized erythrocytes,  as a result  of  the destruction of erythrocytes  
caused by the parasites and RONS during the paroxysm of malaria,  and due to cytoadherence of 
erythrocytes to blood vessels [70].

Furthermore, this syndrome can trigger anaerobic metabolism, the production of lactic acid, and 
the  consequent  depletion of  adenosine  triphosphate  (ATP).  As  ATP availability  is  reduced,  ATP-
dependent  ion  channels  begin  to  fail.  At  the  same  time,  calcium  overload  and  excessive  RONS 
production open the mitochondrial permeability transition pore, further reducing ATP levels [71,72]. 
During the ischemic process,  the degradation of ATP causes the accumulation of xanthine oxidase 
(XO) and hypoxanthine due to the lack of oxygen. When the blood supply is resumed, XO acts on  
hypoxanthine resulting in the production of O2

•- (Figure 3), which can later be converted into OH• in 
the presence of transition metals and, consequently, trigger oxidative stress [73,74].

Figure 3. Oxidative stress due to ischemia-reperfusion syndrome during malaria.
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During  this  process,  UA  is  also  formed,  which  is  a  weak  organic  acid  present  mainly  as  
monosodium urate at physiological pH [75]. UA can be found in the host organism during malarial 
infection and can act by eliminating RONS and chelating transition metal ions or even by reducing 
NOS expression, impairing NO release [76,77]. Previous studies have shown that plasma UA levels in 
P. falciparum-infected children increase during acute episodes and with disease severity, suggesting 
that UA is an important mediator in the pathophysiology of malaria [78,79].

In the ischemia-reperfusion syndrome, RONS can be produced during ischemia but is massively 
increased  during  reperfusion,  amplifying  and  propagating  oxidative  damage  and  destroying  the 
integrity of proteins, membranes, and microvascular endothelium [80].

3.3. Oxidative Stress Due to the Metabolism of the Parasite
Another important oxidative mechanism in malaria is mainly triggered by the metabolism of the 

parasite, as well as by the potentially oxidative by-products generated and released from red blood 
cells  destroyed  by  the  action  of  the  parasite  [81].  Inside  the  erythrocyte,  the  parasite  digests 
hemoglobin in its acidic digestive vacuole, forming essential amino acids for parasite development 
and proliferation  [82]. However, in this process, ferroprotoporphyrin IX or heme complex (FPIX) is 
released, which is toxic to the parasite. On the other hand, this complex can still be detoxified within 
the parasite by polymerization [83].

Although the parasite manages to polymerize FPIX, resulting in a nontoxic derivative, hemozoin, 
also known as a malarial pigment, a significant amount escapes polymerization [84]. Thus, the ferrous 
iron  (Fe2+)  from  FPIX  is  oxidized  to  the  ferric  state  (Fe3+),  with  the  consequent  production  of 
superoxide, which dismutates to H2O2 (Figure 4). This oxidative reaction chain leads to the production 
of OH• from reactions involving H2O2 and Fe3+, such as the Fenton and Haber–Weiss reactions [85].

Figure 4. Oxidative stress as a consequence of parasite metabolism.

These free radicals can cause damage to the parasite’s digestive vacuole membrane, eventually 
killing it [81]. However, the rapid development and proliferation of the parasite, associated with the 
RONS generated and released inside the erythrocytes,  cause structural damage to the erythrocytes 
[86]. This results in increased membrane permeability for ions, increased cell volume, oxidation of 
sulfhydryl groups, and reduced deformability, contributing to the loss of erythrocyte function and cell 
lysis [67,87].

Consequently, all intra-erythrocyte content, including RONS, will be released to the extracellular 
environment, resulting in damage to several biomolecules, such as lipids, proteins, and DNA, as well  
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as enzyme inactivation, apoptosis induction, modification of surface adhesion molecule expression of 
leukocytes  and  endothelial  cells,  and  alteration  in  the  bioavailability  of  NO,  compromising 
homeostasis and, ultimately, its survival [88,89]. These changes expose the host organism to a highly 
oxidative  environment  (Figure  5),  implying  the  development  of  systemic  complications  such  as 
reduced blood flow and severe anemia and also facilitating the entry of parasites into tissues such as  
the lung and brain, which can lead to organ failure [83,90–92].

Figure 5. Consequences of the multiplication of parasites in the erythrocyte.

3.4. Oxidative Stress as a Consequence of the Metabolization of Antimalarial Drugs
The  drug  treatment  of  malaria  is  specially  designed  to  interrupt  parasite  proliferation, 

responsible  for  the  pathogenesis  and clinical  manifestations of the  infection,  to  destroy the latent 
forms of the parasite (hypnozoites) to prevent late relapses, and to prevent the transmission of the 
parasite,  through the use  of drugs that  prevent  the development of sexual forms of the parasites 
[93,94].

In this context, one of the main targets of antimalarial drugs is the intracellular pathway of heme 
metabolism, which is implicated in the production of RONS and the consequent death of the parasite  
[95,96].  Therefore,  chloroquine,  a  quinoline  blood  schizonticidal  drug  used  to  treat  severe  and 
uncomplicated cases of malaria, can act by preventing FPIX polymerization, causing the accumulation 
of FPIX in the parasite’s digestive vacuole and consequent lethal oxidative stress in the parasite [97–
99].  However,  there  are  increasing  reports  of  P.  falciparum  resistance  to  quinoline  antimalarials, 
highlighting the importance of the P. falciparum chloroquine resistance transporter, a member of the 
drug/metabolite  transporter  superfamily  located  in  the  parasite’s  digestive  vacuole,  as  the  main 
responsible for chloroquine resistance [100–102].

Other studies indicate that, in addition to showing chemical similarity with chloroquine and a 
similar  mechanism  of  action,  other  quinolines,  such  as  quinine,  amodiaquine,  lumefantrine,  and 
mefloquine  are  effective  against  many  strains  of  parasites  resistant  to  chloroquine  [103–105].  In 
addition, some of these drugs are widely used in combination therapies with artemisinin derivatives, 
including artemether plus lumefantrine and artesunate plus amodiaquine, and provide synergistic 
antimalarial activity along with preventing the development of antimalarial drug resistance [106–108].

The site of action of artemisinin and its derivatives dihydroartemisinin, artemether, arteether, and 
artesunate is believed to be the parasite’s digestive vacuole, where these drugs can interfere with the  
FPIX complex, giving rise to RONS, leading to damage to nearby proteins, and still interacting with  
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the mitochondrial electron transport chain of the parasite, enhancing RONS production, impairing 
mitochondrial functions, and killing the parasite [109–111].

Artemisinins  act  quickly  and  are  very  potent  against  blood-stage  parasites.  They  are  active 
against  the  sex  stages  of  the  parasite,  which  is  important  for  blocking  transmission  [112,113]. 
However, due to their short half-life, these drugs are used in conjunction with other long-acting drugs 
that remain in the body for longer to fight potential remaining parasites [114,115].

Accordingly,  studies  show that  primaquine  increases  the  effect  of  combination  therapy with 
artemisinin derivatives in eliminating malaria and reduces the risk of artemisinin-resistant infections 
[116].

Furthermore, only primaquine is recognized for completely eliminating P. vivax and P. ovale that 
form hypnozoites—the latent form of the parasite  that remains in the liver  and is  responsible  for 
disease relapse in individuals infected by these parasites—refractory to most drugs and for providing 
a radical cure [93,117]. Primaquine, an 8-aminoquinoline, can act directly on erythrocytes leading to 
massive production of RONS and consequent lipid peroxidation of the cytoskeleton and membrane, 
as well as hemolysis [118]. However, the use of primaquine in individuals with glucose-6-phosphate 
dehydrogenase deficiency can result in clinical manifestations of hemolysis, such as severe anemia, 
fatigue, jaundice, and acute renal failure, thereby limiting its use [119,120].

In this scenario, as a product of the normal host’s metabolism or from the metabolism of the  
parasite,  or as an effect of pharmacological treatment, intensely produced RONS cause damage to 
lipids,  proteins,  and DNA, leading to oxidative  stress  that  impairs the normal  functioning of the 
infected organism  [98].  Therefore,  the  search  for  adjuvant  therapies  that  can  improve the  clinical 
outcomes of malaria continues because, despite their benefits, treatments eventually cause oxidative 
damage, which limits their use [121].

3.5. Nitric Oxide in Malaria
Scientific  evidence  demonstrates  that  a  specific  RONS  is  particularly  involved  in  the 

pathophysiology of this disease: NO [122,123]. It has been suggested that the low bioavailability of NO 
promotes oxidative stress in tissues such as the brain and lungs [124]. On the other hand, it has been 
shown that NO at high concentrations can kill Plasmodium [125,126]. NO is an important mediator of 
biological processes such as vascular homeostasis, neurotransmission, immunity, and inflammation 
[127–129]. Furthermore, it is a free radical produced by three different nitric oxide synthase enzymes,  
neuronal  NOS  (nNOS  or  NOS1),  endothelial  NOS  (eNOS  or  NOS3),  which  are  constitutively 
expressed, and the inducible NOS (iNOS or NOS2), which is induced by inflammatory stimuli  [130–
133].  NO  is  very  reactive  and  has  a  very  short  half-life.  For  this  reason,  nitrite  and  nitrate 
measurements, which are the final metabolites of NO, have been used to measure the concentration of 
NO indirectly [134,135].

Experimental  evidence  indicates  that  NO  plays  an  important  role  in  the  defense  against  
plasmodia in vitro and in vivo [136,137]. In this context, studies have shown that circulating levels of 
nitrite and nitrate were higher in anopheline mosquitoes—a natural vector of malaria in humans—
infected with  Plasmodium and that increased NO concentrations at the beginning of the sporozoite 
stage induced the formation of toxic metabolites, limiting parasite development [138].

In children and adults with malaria, elevated plasma levels of nitrites and nitrates have been 
associated  with  more  rapid  parasite  clearance  [139].  Indeed,  previous  studies  have  shown  that 
children infected  with  P.  falciparum  had elevated levels  of  NO and iNOS activity,  suggesting the 
protective  role  of  NO  in  children  with  malaria  [140].  Protection  against  severe  malaria  in  this 
population of children appears to be associated, at least in part, with a polymorphism in the iNOS 
gene, which produces high levels of NO during an inflammatory event  [141]. These studies suggest 
that NO production during malaria depends on the severity of the disease and the degree of patient 
immunity [142].

In an animal model of experimental cerebral malaria (ECM), Serghides et al. [143] demonstrated 
that pretreatment with inhaled NO reduced the accumulation of parasitized erythrocytes in the brain, 
decreased  endothelial  cell  expression,  and  preserved  vascular  integrity.  From  these  results,  the 
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authors  suggested  that  prophylaxis  with  NO  inhalation  can  reduce  systemic  inflammation  and 
endothelial activation during ECM. In a similar model, Ong et al. [144] showed that cerebrovascular 
dysfunction  is  characterized  by  vascular  constriction,  occlusion,  and  cell  damage,  resulting  in 
impaired perfusion and reduced cerebral blood flow and oxygenation, and was associated with low 
NO bioavailability.

Given the critical importance of NO-derived and -non-derived oxidative stress in the underlying 
pathophysiological  mechanisms  of  the  disease,  studies  have  shown  that  natural  or  synthetic 
exogenous antioxidants, including vitamin A, E, zinc, selenium, NAC, curcumin,  Agaricus sylvaticus 
mushroom, and carotenoids,  can  benefit  the  treatment  of  malaria  [145–148].  Several  studies  have 
indicated  an  association  between  the  use  of  carotenoids  and  a  decrease  in  oxidative  changes, 
suggesting  that  the  antioxidant  properties  of  these  compounds  are  an  important  factor  against 
malaria-induced oxidative stress [149,150]. The recent interest in carotenoids has focused on the role of 
lycopene in human health [151,152].

4. Lycopene
Lycopene is a natural constituent synthesized by plants and microorganisms  [153]. It  is a red 

pigment found in some fruits and vegetables, such as guava, watermelon, papaya, pitanga (Eugenia  
uniflora—Myrtaceae),  tomatoes,  and  their  derivatives  [154–157] and  can  be  extracted  from  these 
vegetables  by chemical  reactions using organic solvents,  such as ethanol and ethyl acetate and/or 
using  a  supercritical  fluid  such  as  supercritical  carbon dioxide,  or  by  heat  treatment  at  different 
temperatures ranging from 60 to 140 °C  [158–163]. It is widely used as a supplement in functional 
foods, nutraceuticals, and pharmaceuticals, as well as an additive in cosmetics [164,165].

Lycopene is an intermediate product of the β-carotene biosynthetic pathway that does not have 
provitamin A activity, as it does not have the β-ionone ring in its structure, which is responsible for 
this  characteristic  [166].  This  compound  is  a  noncyclic,  fat-soluble  hydrocarbon  that  contains  11 
conjugated double bonds and 2 unconjugated double bonds, thereby offering it greater reactivity. This 
polyene can also exist in all-trans and  cis-lycopene isomeric forms (Figure 6). Conversion from all-
trans- to  cis-lycopene forms can occur by geometric isomerism induced by light, thermal energy, or 
chemical reactions [167,168].

Figure 6. All-trans-lycopene and cis-lycopene structures.

4.1. Sources
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Tomatoes and tomato products are the main source of lycopene and are considered an important 
source of carotenoids in the human diet. In raw or fresh tomatoes, lycopene occurs mainly as a trans 
isomer  [169]. However,  cis isomers are better absorbed by the human body than  trans isomers.  Cis 
isomers form during cooking, food processing, and storage, which do not affect the total lycopene 
content [170].

Studies have shown higher plasma lycopene concentrations after ingestion of processed tomatoes 
compared to raw tomatoes [171,172]. In fact, processing and homogenization induce the disruption of 
the  food membrane,  converting lycopene from the  trans to  cis form,  increasing its  solubility  and, 
consequently,  its  availability  [173].  In  addition,  the  acidic  pH  of  the  stomach  also  appears  to 
secondarily contribute to such conversion, as it can lead to the transformation of the trans to cis form 
[174].  Thus,  lycopene can be  rapidly and completely absorbed without energy expenditure in  the 
intestinal wall after oral administration in animals and humans [175].

4.2. Absorption
After absorption, lycopene can be found in high concentrations in human body fluids and tissues,  

such as breast milk, prostate, testis, and skin [176]. Furthermore, it is the predominant carotenoid in 
human  plasma,  naturally  present  in  a  higher  concentration  than  β-carotene  and  other  dietary 
carotenoids, which may indicate its greater biological significance for the human defense system [177].

Studies suggest that lycopene is transported between cells to target organs by specific proteins or  
migrates  aggregated to  chylomicrons,  with the  isometric  form of lycopene being decisive  for  this 
process [178]. This is because, after passing through the stomach, trans isomers can readily aggregate 
within the intestine and form crystals, greatly reducing their absorption by micelles, while the cis form 
allows lycopene to be more efficiently incorporated into mixed micelles  [179]. The lycopene-loaded 
micelles are then absorbed into enterocytes, from where they are released in chylomicrons, which exit 
to the lymph, passing from there to the systemic circulation to the liver. The liver stores and secretes 
carotenoids as very low-density lipoproteins (VLDL),  which are subsequently absorbed by various 
tissues,  including adrenal,  kidney,  adipose,  splenic,  lung,  and reproductive  organ tissues,  and are 
subsequently recovered as other low-density (LDL) and high-density (HDL) lipoproteins  [178,180]. 
During absorption,  lycopene taken up by the enterocyte can also be cleaved by β-carotene 9’,10’-
oxygenase  (BCO2)  to  form  apo-10’-carotenoid  metabolites,  including  lycopene  apo-10’-lycopenols 
[181–183].

4.3. Metabolism
Lycopene can be metabolized through isomerization, followed by oxidation to produce epoxides, 

or  undergo  eccentric  cleavage  by  BCO2  to  form  apolycopenols  [181,182,184,185].  Additionally, 
lycopene cleavage products can be generated through autoxidation, via reaction with free radicals  
[186], by processes that simulate biological tissues [187], or even by chemical reactions that cause the 
interruption of the polyene chain, affecting the carbon-carbon double bond system, and by addition or 
cleavage, resulting in several isomers and apolycopenols [159,188].

Among  the  most  interesting  lycopene  metabolites  formed  by  oxidative  degradation  of  the 
hydrocarbon chain are the apolycopenols [189]. Apolycopenols have already been detected in animal 
tissues, such as ferret lungs [182] and the liver of rats [190], after treatment with lycopene. In addition, 
several apolycopenols have been isolated from fruits, vegetables, and human plasma [191].

Increasing evidence suggests that many of lycopene’s biological actions may be mediated, at least 
in part, by its metabolites and/or oxidation products [192–194]. In this regard, lycopenols were shown 
to  reduce  the  proliferation  of  cancer  cells,  induce  apoptosis,  regulate  the  cell  cycle,  induce  the 
expression  of  nuclear  transcription  factors,  and  enhance  cell-to-cell  communication  [189,195–198]. 
Furthermore, the study by Böhm et al.  [199] showed that the cis isomers obtained from processed 
foods had an antioxidant potential twice as intense as β-carotene. Additionally, studies by Lian and 
Wang  [200] showed  that  treatment  of  human  bronchial  epithelial  cells  (BEAS-2B)  with  apo-10’-
lycopenoic  acid  (10  µM)  increased  GSH  levels  and  suppressed  RONS  production  and  oxidative 
damage induced by H2O2 in vitro. In addition, it was reported that apo-10’-lycopenoic acid induced 
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the expression of phase II antioxidant enzymes mediated by factor 2-related nuclear erythroid factor 2 
(Nrf2), including heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione 
S-transferases (GST), GR, and γ-glutamylcysteine synthetase (γ-GCS) [200].

Apolycopenol treatment also inhibited methemoglobin-induced lipid peroxidation in a chemical 
model of postprandial oxidative stress in the gastric compartment [201].

In another  in vitro study,  both apo-10’-lycopenoic  acid and apo-14’-lycopenoic acid inhibited 
RONS production and oxidative DNA damage induced by H2O2 and cigarette smoke. This effect was 
accompanied  by  the  inhibition  of  mitogen-activated  protein  kinase  (MAPK)  phosphorylation,  the 
expression of heat shock proteins (hsp)70 and hsp90, and the inactivation of NF-κB, molecules that are 
activated in situations of oxidative stress and which have also been implicated in the modulation of  
various intracellular redox functions [202].

5. Antioxidant Effects of Lycopene
Among  the  carotenoids,  lycopene  is  the  most  effective  antioxidant  against  RONS  and  may 

contribute to preventing or reducing oxidative damage to cells and tissues in vivo and in vitro [203]. 
Evidence supports the role of lycopene as a potent antioxidant, capable of scavenging singlet oxygen 
(1O2) and other free radicals, such as ROO-, with a potential twice as high as β-carotene, and ten times 
as efficient as α -tocopherol, although lycopene circulates at much lower concentrations than vitamin 
E  [204,205].  During the elimination of  1O2,  energy is  transferred from this radical  to the lycopene 
molecule and, as it has an open chain with 11 conjugated double bonds in its structure, this favors 
stabilization  of  the  unpaired  electron  of  the  radical  by  resonance  [206,207].  Additionally,  it  was 
observed that lycopene effectively eliminates other RONS, such as OH•, O2

•-, and ONOO- [208].
Furthermore, the lipophilic characteristic of lycopene favors its interaction with the lipid bilayer 

of the cell membrane, thereby preventing the breakdown of fatty acids and the oxidation of lipids,  
proteins, and DNA [180]. In this sense, Suwannalert et al. [209], investigating serum levels of lycopene 
and malondialdehyde (MDA) in elderly susceptible to oxidative stress, demonstrated that lycopene 
levels were inversely related to MDA levels. Additionally, Yonar and Sakin [206] demonstrated that 
lycopene treatment prevented deltamethrin-induced oxidative stress by decreasing MDA levels in fish 
(Cyprinus carpio) and significantly increasing SOD, CAT, and GSH-Px activities and the level of GSH. 
Similar results were found by Kujawska et al. [210], who reported that treatment with tomato extract 
enriched with lycopene was able to suppress the oxidative stress induced by N-nitrosodiethylamine in 
rats and increase the enzymatic antioxidant activity in these animals.

5.1. Cardioprotective Effect of Lycopene
Oxidative  stress  produced  by  RONS  is  implicated  in  the  development  of  several  diseases,  

including  atherosclerosis  and  several  heart  diseases  [50,211],  but  studies  suggest  that  lycopene 
supplementation or consumption of tomato and its derivatives can improve endothelial function and 
lead  to  reduced  blood  pressure  [187].  In  this  sense,  Mohamadin  et  al.  [212] investigated  the 
cardioprotective  potential  of  lycopene  against  isoproterenol-induced  oxidative  stress  and  cardiac 
lysosomal  damage  in  rats.  According  to  the  authors,  lycopene  supplementation  (4  mg/kg/day) 
significantly  improved  lysosomal  membrane  damage,  as  well  as  changes  in  cardiac  enzymes, 
including  aspartate  aminotransferase,  creatine  kinase  isoenzyme  MB,  and  troponin  T,  as  well  as 
oxidative stress markers such as MDA, GSH, GSH-Px, SOD, and CAT.

Previously,  Bose  and  Agrawal  [213] had  already  observed,  in  a  clinical  study  with  grade  I 
hypertensive patients, that tomato supplementation for 60 days improved the levels of antioxidant 
capacity and reduced lipid peroxidation in these patients.  Ferreira-Santos et al.  [151] reported that a 
lycopene-supplemented  diet  prevented  angiotensin  II-induced  hypertension  with  no  effect  in 
normotensive rats. The authors suggested that the infusion of angiotensin II caused a decrease in the 
activity of antioxidant enzymes, and the treatment with lycopene improved the antioxidant balance, 
increasing the activity of GSH-Px and SOD, reducing oxidative stress, and improving cardiovascular 
remodeling.  These  results  confirm  the  antihypertensive  potential  of  lycopene  without  the  risk  of 
causing hypotension in normotensive individuals.
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5.2. Anti-Atherosclerotic Effect of Lycopene
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids and 

inflammatory cells in the walls of medium and large-caliber arteries, which is the main cause of heart  
disease and mortality in Western societies. The pathogenesis of atherosclerosis involves the activation 
of inflammatory mediators, cytokines, and increased oxidative stress [214,215].

In evaluating the effect  of  lycopene in  an animal  model  of  atherosclerosis,  Renju et  al.  [216] 
demonstrated that CAT, SOD, and GSH-Px activities and GSH levels were increased, while the levels 
of  thiobarbituric  acid  reactive  substances (TBARS),  total  cholesterol,  triglyceride,  low-density 
lipoprotein  (LDL),  very-low-density  lipoprotein,  and  inflammatory  mediators,  including 
cyclooxygenase-2  (COX-2)  and  15-lipoxygenase,  decreased  after  treatment  with  lycopene  isolated 
from  the  alga  Chlorella  marina.  Additionally,  Martín-Pozuelo  et  al.  [217] showed  that  tomato 
consumption improved the expression of genes such as  fatty acid-binding protein 2, which encodes 
enzymes involved in lipid metabolism, thus reducing the synthesis of fatty acids, triglycerides, and 
cholesterol,  preventing their accumulation and modulating the progression of steatosis induced in 
rats.  Moreover,  according  to  Navarro-González  et  al.  [218],  lycopene  competes  with 
hydroxymethylglutaryl coenzyme A in the liver, thus preventing the formation of mevalonate, and 
consequently  reducing  cholesterol  synthesis  by  reducing  the  activity  of  the  enzyme  3-hydroxy-3-
methylglutaryl-coenzyme A reductase.  For  this  reason,  the  consumption  of  tomato  juice  and the 
accumulation of lycopene in the liver  were able to  improve plasma cholesterol  levels  in  steatosis  
induced in animals [218].

In this sense, Kumar et al.  [219] observed that treatment with lycopene induced an increase in 
high-density lipoprotein and reduced levels of total cholesterol, LDL, triglycerides, and TBARS in rats 
fed a high-cholesterol diet. Brito et al.  [220] also demonstrated that lycopene extracted from guava 
(Psidium guajava  L.)  reduced MDA and triglyceride  levels,  as  well  as  reduced plasma  activity  of 
myeloperoxidase and hepatic steatosis in an animal model of dyslipidemia. The results indicated that 
lycopene has hypolipidemic and anti-atherogenic potential.

5.3. Hepatoprotective Effect of Lycopene
Oxidative stress is believed to be an important contributor to the pathogenesis of liver diseases,  

ranging from simple steatosis to its more severe form or even the genesis of hepatocellular carcinoma 
[221].  When  investigating  the  role  of  lycopene  in  an  animal  model  of  hepatotoxicity,  studies 
demonstrated that  lycopene improved biochemical  indices,  both  in  the  blood and in  the  liver  of  
animals.  Furthermore, lycopene restored the antioxidant capacity and increased the levels of GSH, 
GSH-Px, glutathione S-transferase (GST), CAT, and SOD, which, together with lycopene, could limit 
the production of oxidants [222–224]. Similar results were observed in the study by Abdel-Daim et al. 
[225], where zinc oxide poisoning in fish caused severe lipid peroxidation with a significant increase in 
the level  of  MDA in the liver,  kidney,  and gill  tissues,  and treatment with lycopene significantly 
reduced the production of this oxidative stress biomarker

Recently, Ni et al.  [152] demonstrated that lycopene inhibited and reversed lipotoxicity-induced 
insulin  resistance,  preventing  nonalcoholic  steatohepatitis  in  mice,  attenuating  hepatic  lipid 
accumulation, and increasing lipolysis.  The beneficial effects of lycopene were attributed in part to 
decreased  hepatic  recruitment  of  T  cells  and  macrophages,  and  to  a  reduction  in  macrophage 
M1/Kupffer cells, which attenuated insulin resistance, as well as liver inflammation and fibrosis, in 
preexisting steatohepatitis. These effects have been associated with a decrease in oxidative stress in 
cells.

5.4. Anti-Diabetic Effect of Lycopene
Lycopene appears to have beneficial effects in improving factors related to diabetes progression, 

including oxidative stress, inflammation, and endothelial dysfunction [226]. It was observed that the 
administration of lycopene in rats decreased glucose levels, increased insulin concentration, reduced 
H2O2,  TBARS, and iNOS levels,  increased cNOS activity and NO levels,  as well as increased total 
antioxidant capacity with increased CAT, SOD, and GSH-Px activity [227–229].
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In  humans,  in  a  placebo-controlled  clinical  trial  with  patients  with  type  2  diabetes  mellitus, 
Neyestani et al. [230] found a negative correlation between total antioxidant capacity and MDA in the 
lycopene-treated group, indicating that lycopene supplementation attenuates oxidative stress in these 
patients. According to Yin et al.  [231], lycopene strengthens the antioxidant defense system against 
oxidative stress, attenuating insulin signaling deficits, inhibiting neuroinflammation, and improving 
cognitive function. These studies suggest that lycopene may help improve the progression of diabetes 
in humans.

5.5. Anti-Cataract Effect of Lycopene
The ocular  environment is  rich in  endogenous sources  of  RONS.  Although there are several 

physiological defenses to protect ocular lenses from the toxic effects of light and oxidative damage, 
evidence suggests that long-term chronic exposure to oxidation can damage the lens and predispose it 
to  the  development  of  cataracts  [232].  In  this  sense,  Gupta  et  al.  [233] showed  that  lycopene 
supplementation  in  rats  restored  GSH,  SOD,  CAT,  and GST  levels  and,  consequently,  prevented 
sodium  selenite-induced  cataracts.  According  to  the  authors,  lycopene  protects  against  the 
experimental development of cataracts due to its antioxidant properties and may be useful for cataract 
prophylaxis or therapy  [234]. Also, Göncü et al.  [235] demonstrated the anti-inflammatory effect of 
lycopene  on  lipopolysaccharide-induced  uveitis  in  rats.  According  to  the  authors,  the  anti-
inflammatory activity of lycopene was mediated by the inhibition of TNF-α, NO, and IL-6 production, 
resulting in reduced inflammation and uveal oxidative stress.

5.6. Anti-Cancer Effects of Lycopene
Studies have shown that lycopene can reduce the risk of cancer by inducing antioxidant enzymes 

and  phase  II  detoxifying  enzymes  such  as  NAD(P)H  quinone  oxidoreductase  1  and  γ-
glutamylcysteine  synthetase  [236].  These  enzymes eliminate  many harmful  substances,  converting 
them  into  hydrophilic  metabolites  that  can  be  readily  excreted  from  the  body.  In  fact,  lycopene 
administration significantly suppressed gastric cancer in vivo, reducing lipid peroxidation, increasing 
the levels of vitamin C, vitamin E, and GSH, and increasing circulating activity dependent on enzymes 
such  as  GSH-Px  and  GST  [237].  Lycopene  also  prevented  experimental  oral  carcinogenesis  by 
inhibiting oxidative stress through the upregulation of detoxification pathways [238]. Recently, Cheng 
et al. [239] demonstrated the efficacy of lycopene in inhibiting the oxidative stress induced by cigarette 
smoke in lung cancer epithelial cells.

Other  potentially  beneficial  effects  of  lycopene  include  inhibition  of  carcinogenic  activation, 
proliferation,  angiogenesis,  invasion,  and  metastasis,  blocking  tumor  cell  cycle  progression,  and 
induction of apoptosis through its antioxidant activity and changes in various signaling pathways 
[240–244]. In addition, lycopene improved communication between cells by stimulating gap junctions, 
which is believed to be one of the protective mechanisms related to the cancer-preventive activities  
attributed to lycopene [195].

In  in  vitro  studies,  lycopene  treatment  selectively  interfered  with  cell  growth  and  induced 
apoptosis  in cancer  cells  without affecting normal cells  [200,245].  In vivo studies  have shown the 
protective effects of lycopene against liver cell carcinoma and prostate cancer  [197,237,246–253]. In 
addition to the correlation between lycopene and prostate cancer demonstrated in clinical  studies,  
increasing evidence  suggests  that  lycopene plays an important  role in preventing cancer  in  other 
organs such as the breast, lung, gastrointestinal tract, pancreas, cervix, and ovaries [254–257].

6. Effects of Lycopene on Malaria
The use of antioxidant compounds in the treatment of tropical diseases has increased, including 

Chagas disease, dengue, and malaria, as several studies have suggested the involvement of oxidative 
stress in the pathogenesis and progression of these diseases [54,258,259]. In this context, studies show 
that  the  discovery  of  new  antimalarial  drugs  is  necessary,  and  natural  antioxidant  products  are 
important sources for obtaining new antimalarial compounds or even as adjuvant therapy, enhancing 
the activity of antimalarial drugs [260–264].



28

A  study  by  Metzger  et  al.  [34] demonstrated  that  natural  products  can  be  used  in  malaria 
chemotherapy. According to this study, increased plasma lycopene concentration was associated with 
faster clearance of parasites in children. In a related study, Caulfield et al. [265] demonstrated that the 
nutritional  deficiency  of the host  is  associated with the  morbidity  and mortality of  children with 
severe  malaria.  In  this  sense,  previous  studies  suggest  that  changes  in  plasma  concentrations  of 
micronutrients, including vitamins A and C, retinol, β-carotene, α-carotene, β-cryptoxanthin, lutein, 
and lycopene, occur due to increased use of these antioxidants in patients with malaria, suggesting 
that there may be a need for vitamin supplementation in patients with malaria [266]. In corroborating 
this suggestion, the nutritional deficit seems to be associated with a redirection of these antioxidants to 
the liver to aid in the synthesis of acute-phase proteins in other organs, repair tissue damage caused 
by the infectious organism, and aid in the host’s oxidative defense mechanisms [33].

In fact, Sondo et al.  [32] had already reported that periodic supplementation of high doses of 
vitamin A and zinc could reduce the morbidity caused by malaria. In this sense, Agarwal et al. [147] 
investigated the effect of lycopene on the growth of P. falciparum in vitro, monitoring the progression 
at different stages. These authors showed that lycopene treatment induced an increased production of 
RONS in the cytoplasm of the parasite, which caused the parasite to lose its mitochondrial membrane 
potential and cytotoxicity, resulting in merozoites not being released from the erythrocytes of the host,  
suggesting that the inclusion of lycopene in the diet may be useful in changing the clinical outcomes 
of malaria.

Preliminary results  from our  research group demonstrated that  lycopene supplementation in 
mice (BALB/c; 3.11 mg/kg) infected with the P. berghei  strain showed a delay in the induction and a 
decreased progression of parasitemia. Also, the animals supplemented with lycopene showed a higher 
rate  of  survival  compared  to  the  positive  control  [267],  suggesting  lycopene  prophylactic  and 
antiparasitic activity, which may be due to the cytotoxic effect of lycopene against the parasite [147], 
suggesting an important role of lycopene supplementation in preventing malaria [268].

6.1. Neuroprotective Effect of Lycopene
Individuals infected with P. falciparum can rapidly progress to severe anemia, respiratory distress, 

and cerebral malaria [269]. Cerebral malaria is associated with debilitating neurological impairments 
in  survivors,  as  well  as  higher  number  of  malaria  deaths  [270].  Although  there  is  no  complete 
understanding of the exact mechanisms and processes that lead to neuronal cell  death in cerebral  
malaria, studies demonstrate that elevated levels of the inflammatory cytokines and RONS contribute 
to neuronal cell death in cerebral malaria [271,272].

Furthermore,  considerable  evidence suggests  that  microvascular  dysfunction,  sequestration of 
parasitized  blood  cells  in  the  microcirculation,  an  abrupt  reduction  in  blood  flow,  and  cerebral 
hypoxia  are  essential  for  ischemic  stroke,  characterized  by  the  presence  of  both  ischemic  and 
reperfusion-induced injuries in the brain, leading to neuronal dysfunction and death  [273].  In this 
context,  studies by Paul  et  al.  [274] and Farouk et  al.  [275] point  out that  lycopene is  a  powerful 
antioxidant, permeable to the blood-brain barrier, with neuroprotective activity. Previously, Hsiao et  
al.  [276] showed that  treatment  with  lycopene  in  rats  (4  mg/kg)  prevented  ischemic  brain  injury 
induced by middle cerebral artery occlusion by inhibiting microglia activation and NO production, 
resulting  in  reduced  infarction  volume  in  brain  injury  by  the  ischemia-reperfusion  syndrome. 
Additionally, lycopene has been shown to protect the brain from ischemic damage by its ability to  
increase  GSH  production  and  decrease  RONS  production.  Furthermore,  lycopene  activates  the 
expression of nuclear factor erythroid 2 related factor 2 and heme oxygenase-1, one of the antioxidant  
pathways involved in the attenuation of oxidative stress and the maintenance of the redox state in 
various tissues and organs, such as the brain tissue [277].

Oxidative stress is also strongly implicated in the pathogenesis of neurodegenerative diseases, 
such as Alzheimer’s disease (AD) [278] and Parkinson’s disease (PD) [279]. In this sense, Kaur et al. 
[280] demonstrated that lycopene supplementation in rats (10 mg/kg) for 30 days was able to reduce  
oxidative  stress  in  rotenone-induced PD,  restoring GSH and SOD levels  and reversing complex  I 
inhibition of the electron transport chain, exerting a protective effect on motor and cognitive deficits. 
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Furthermore,  according  to  Prema  et  al.  [281],  lycopene  induces  increased  expression  of  the 
antiapoptotic protein B-cell lymphoma 2 protein (BCL-2) and decreased release of the proapoptotic  
proteins cytochrome c, protein x associated with BCL-2 (BAX), and caspases-3, 8, and 9, preventing 
apoptosis in mice with PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

Previously, studies have shown the activation of inositol-requiring enzyme 1, induction of X box-
binding  protein  1,  upregulation  of  BAX,  downregulation  of  BCL-2,  and  cleavage  of  caspase-3 
indicating  the  endoplasmic  reticulum  stress-mediated  apoptotic  pathway  in  PbA-infected  mouse 
brains  involved  in  neuronal  cell  death  in  severe/cerebral  malaria  [271].  Thus,  lycopene  reverses 
neurochemical  deficits,  oxidative stress,  apoptosis,  and physiological  abnormalities in malaria and 
PD-induced mice.

Other studies reinforce the importance of lycopene in neuronal mitochondrial function. In a rat  
cortical neuron culture model using an established paradigm of β-amyloid (Aβ) peptide-induced cell 
injury, Qu et al.  [282] found that lycopene significantly inhibited intracellular RONS and prevented 
Aβ-induced  mitochondrial  fragmentation.  Furthermore,  it  inhibited  the  opening  of  mitochondrial 
permeability  transition  pores  as  well  as  the  release  of  cytochrome c.  Lycopene  also  prevented  a 
decrease in the enzymatic activity of the mitochondrial complex and a reduction in the generation of 
ATP, besides preventing the occurrence of damage to the mitochondrial DNA and improving the level 
of the mitochondrial transcription factor A in the mitochondria. These results suggest that the ability  
of lycopene to prevent Aβ-induced neurotoxicity is closely related to the inhibition of mitochondrial  
oxidative stress and improvement of mitochondrial function [282,283].

Behavioral experiments confirmed that lycopene consistently reduced Aβ accumulation in elderly 
CD-1 mice  [284].  Lycopene also  attenuated age-associated cognitive  impairments,  including  those 
involving  locomotor  activity,  working  memory,  and  spatial  cognitive  memory.  Lycopene 
administration reversed the systemic and oxidative stress responses of the central nervous system 
induced by aging. Furthermore, lycopene downregulated the expression of inflammatory mediators 
and prevented synaptic dysfunction in aged mouse brains  [285]. Huang et al.  [286] also showed the 
antagonistic effect of lycopene on neuronal oxidative damage induced by tert-butyl hydroperoxide in 
vitro.  Moreover,  lycopene  increased  cell  viability,  improved  neuron  morphology,  increased  GSH 
levels,  and  decreased  the  production  of  RONS.  Lycopene  also  reduced  the  expression  of  BAX, 
cytochrome  c,  and  caspase-3  and  increased  the  expression  of  BCL-2  and  phosphoinositide 
3-kinase/Akt  (PI3K/Akt)  [286].  Recent  studies  confirm  that  lycopene  prevents  neuronal  apoptosis 
through  the  activation  of  the  PI3K/Akt  signaling  pathway,  important  regulators  for  preventing 
mitochondrial damage and apoptosis induced by oxidative stress,  ischemia-reperfusion syndrome, 
that play an important role in severe/cerebral malaria [287–289].

6.2. Effects of Lycopene as an Immunomodulator
Other factors related to neuronal injury and death in severe/cerebral malaria include the release 

of RONS, mitochondrial dysfunction, induction of programmed cell death, microglia activation, and 
release of inflammatory mediators [290,291].

Studies indicate that in malaria infection, increased expression of high mobility group box-1 is  
observed, which interacts with cell surface receptors such as toll-like receptor-4 (TLR-4), leading to the 
overproduction  of  pro-inflammatory  cytokines  (IL-1β,  IL-6,  IL-12,  TNF-α,  and  IFN-γ)  and  anti-
inflammatory  cytokines  (IL-4,  IL-10,  and  IL-13)  [289,291–293].  The  action  of  these  cytokines  in 
conjunction  with  disturbances  present  in  the  microcirculation  can  affect  both  the  integrity  and 
functions of the blood-brain barrier,  leading to vascular  congestion,  disruption of the blood-brain 
barrier, cerebral edema, impaired perfusion, and neuronal damage [294,295].

Several  studies  have  highlighted  the  ability  of  carotenoids  and their  metabolites  to  regulate 
intracellular  signaling  cascades,  modulating  gene  expression  and  protein  translation  in  metabolic 
pathways associated with inflammatory and oxidative stress [296,297]. In this sense, studies indicate 
that  lycopene  can  modulate  the  production  of  IL-1β,  TNF-α,  IL-2,  IL-10,  and IFN-γ,  exerting  an 
immunomodulatory effect on the peripheral blood mononuclear cells of healthy individuals [298], as 
well as suppressing the production of NO, IL-6, and TNF-α [299,300]. According to Feng et al.  [299] 
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and Vasconcelos et al.  [301], lycopene  interferes with the phosphorylation of the inhibitory protein 
kappa  B,  protecting  it  from  degradation  and preventing  the  release  and  translocation  of  NF-κB,  a 
transcription factor that plays an important role in regulating the expression of genes responsible for 
inflammation, such as TNF-α, IL-1β, iNOS, and COX-2, proliferation, and apoptosis (Figure 7).

Figure  7.  Anti-inflammatory  effects  of  lycopene.  (A)  Direct  anti-inflammatory  activity.  (B)  Indirect  anti-
inflammatory activity. TGF-β, Transforming growth factor-beta; AP-1, activator protein-1; JNK, c-jun N-terminal 
kinase;  MAPK,  mitogen-activated  protein  kinases;  I-κB,  kappa  B inhibitory  protein;  LPS,  lipopolysaccharide; 
TNF-α, tumor necrosis factor-alpha; IL-1,  interleukin 1; IL-6,  interleukin 6; MCP-1, monocyte chemoattractant 
protein 1.

Other studies  reinforce  that  the blockade of NF-κB activation by lycopene appears not  to be 
tissue- or cell-type specific and may represent a way in which lycopene can inhibit the production of  
other inflammatory mediators,  including TNF-α, NO, and IL-6, resulting in reduced inflammation 
[302,303].  In  this  sense,  Gouranton  et  al.  [304] showed  that  lycopene  reduced  TNF-α-induced 
activation of the NF-κB signaling pathway in adipocytes. According to the authors, this effect was 
fundamental for the TNF-α-mediated decrease in the expression of proinflammatory cytokines and 
chemokines in adipocytes and pre-adipocyte 3T3-L1 cells. The same effect was observed in human 
adipocytes, where lycopene decreased the expression of IL-6, monocyte chemotactic protein 1, and IL-
1β induced by TNF-α [304].

The  reduced  production  of  the  proinflammatory  cytokines  IL-1β  and  TNF-α,  as  well  as  the 
increased secretion of the anti-inflammatory cytokine IL-10,  indicate that  lycopene can boost anti-
inflammatory responses [305]. In addition, lycopene can increase IL-12 and IFN-γ secretion in human 
peripheral blood mononuclear cells, indicating that lycopene enhances the immune response of the 
host [306]. In this sense, evidence from an ex vivo study indicates the stimulatory effect of lycopene on 
cytokine  production  by  T-helper  1  lymphocytes,  resulting  in  a  cell-mediated  immune  response. 
Yamaguchi  et  al.  [307] observed  that  the  oral  administration  of  lycopene  in  mice  (5  mg/kg/day) 
significantly suppressed capsaicin-induced production of IL-2, IFN-γ, and IL-4 in lymphoid tissue 
cells in the small intestine wall, cytokines that are involved in the development of immunity to the 
antigens present there. Furthermore, lycopene did not alter the T lymphocyte population, indicating 
that lycopene accelerates and/or suppresses T-helper cytokines in these cells, acting to modulate the 
immune response.

Other studies have also verified the potential anti-inflammatory effect of lycopene combined with 
other substances, such as lutein, omega-3, and carnosic acid [308,309]. In this sense, Phan et al.  [310] 
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showed a reduction in IL-8 secretion by human colorectal Caco-2 cells in the presence of lycopene and  
anthocyanin  mixtures.  Previous  studies  have  shown that  the  association  with substances  such  as 
lutein, selenium,  and β-carotene promotes a synergistic  effect,  intensifying NO, TNF-α, SOD, and 
prostaglandin E2 production inhibition, as well as MDA derived from the down-regulation of iNOS, 
COX-2, NADPH oxidase, or 5-lipoxygenase expression, and inhibition of TNF-α secretion [311,312].

Together, these data support the anti-inflammatory and immunomodulatory effect of lycopene 
on major cell subtypes, namely, adipocytes, pre-adipocytes, and macrophages, cells that are involved 
in the production of inflammatory cytokines and chemokines in malaria.

7. Future Trends and Conclusions
The benefits provided by lycopene can be attributed mainly to its direct antioxidant activity [229]. 

This  activity  is  generally  responsible  for  protecting  the  cellular  system from a  variety  of  RONS, 
including 1O2, O2

•-, NO, and OONO-, as well as having an indirect action through the upregulation of 
antioxidant substances, in addition to preventing other diseases  [313]. Finally, Figure 8 summarizes 
the mechanisms of action considered in the present review.

Figure 8. Antioxidant effect of lycopene. (A) Direct antioxidant activity. (B) Indirect antioxidant activity. Keap1, 
Kelch-like inhibitory protein 1; Nrf2, erythroid nuclear factor 2; GSH, glutathione; SOD, superoxide dismutase;  
CAT, catalase; GSH-Px, glutathione peroxidase; PI3K/AKT, phosphoinositide 3-kinase/AKT.

Furthermore,  the  antioxidant  status  of  lycopene,  similar  to  other  carotenoids,  has  also  been 
implicated in the pathogenesis of malaria in vitro and in vivo [33]. In a previous study, Agarwal et al. 
[147] showed the cytotoxic effects of lycopene against P. falciparum in vitro, suggesting an important 
role of lycopene in preventing malaria [268]. Although treatment regimens with various antimalarials 
are used in clinical practice, there are still no substances that can prevent the disease. Thus, it can be 
suggested that dietary lycopene may be useful  in changing the clinical  outcomes of malaria.  This 
review  provides  evidence  of  the  antioxidant  and  anti-inflammatory  benefits  of  lycopene 
supplementation, therefore suggesting it be included when formulating new prevention strategies to 
fight malaria and several other diseases.
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Abbreviations
1O2 singlet oxygen
ATP Adenosine triphosphate
UA Uric acid
Aβ β-amyloid
BAX Protein x associated with BCL-2
BCL-2 B-cell lymphoma protein 2
CAT Catalase
COX-2 Cyclooxygenase-2
AD Alzheimer’s disease
DNA deoxyribonucleic acid
PD Parkinson’s disease
eNOS or NOS3 endothelial nitric oxide synthase
Fe Iron
Fe2+ ferrous iron
Fe3+ ferric iron
FPIX Ferroprotoporphyrin IX or heme complex
GM-CSF Granulocyte and macrophage colony-stimulating factor
GSH reduced glutathione
GSH-Px Glutathione peroxidase
GST Glutathione S-transferases
H2O2 Hydrogen peroxide
IFN-γ Interferon-gamma
IL interleukin
iNOS or NOS2 inducible nitric oxide synthase
Keap1 Kelch-like inhibitory protein 1
LDL Low-density lipoprotein
MAPK mitogen-activated protein kinase
ECM experimental cerebral malaria
M-CSF macrophage colony-stimulating factor
MDA malondialdehyde
MIP-1α macrophage-1α inflammatory protein
MIP-1β macrophage-1β inflammatory protein
NAC N-acetylcysteine
NADPH oxidase nicotinamide adenine dinucleotide phosphate oxidase
NF-κB nuclear factor kappa B
nNOS or NOS1 neuronal nitric oxide synthase
NO nitric oxide
NOS nitric oxide synthase
O2 Oxygen
O2

•- superoxide radical
OH• hydroxyl radical
ONOO- peroxynitrite radical
PI3K/Akt phosphoinositide 3-kinase/Akt
RO- alkoxy radical
RONS reactive oxygen and nitrogen species
ROO- peroxyl radical
ROOH hydroperoxide
SOD superoxide dismutase
TBARS thiobarbituric acid reactive substances
TNF-α tumor necrosis factor-alpha
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XO xanthine oxidase
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Abstract: Oxidative stress is involved in the pathogenesis of malaria, causing anemia, respiratory 
complications, and cerebral malaria.  To mitigate oxidative stress, we investigated the effect of 
nutritional supplementation whit lycopene (LYC) on the evolution of parasitemia and survival 
rate in mice infected with Plasmodium berghei ANKA (Pb), comparing to the effects promoted 
by N-acetylcysteine  (NAC).   Therefore,  175 mice  were  randomly distributed  into 4 groups;  
Sham: untreated and uninfected animals; Pb: animals infected with Pb; LYC+Pb: animals treated 
with LYC and infected with Pb; NAC+Pb: animals treated with NAC and infected with Pb. The 
animals  were  followed for  12 days  after  infection,  and  survival  and  parasitemia  rates  were  
evaluated.  There was a 40.1% increase in parasitemia in the animals of the Pb group on the 12th 
day, and a survival rate of 45%. LYC supplementation slowed the development of parasitemia to 
19% and promoted a significative increase in the survival rate of 80% on the 12th day after 
infection, compared to the Pb group, effects superior to  those promoted by NAC, providing 
strong evidence of the beneficial effect of LYC on in vivo malaria and stressing the importance 
of  antioxidant  supplementation  in  the  treatment  of  this  disease.  Key  words:  Antioxidants, 
oxidative stress, Lycopene, malaria, N-acetilcysteine. 
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INTRODUCTION

Malaria is a serious global public health problem with a significant number of cases in 2020, 

when some 241 million cases occurred and 627,000 people died as a result of this disease. 

Currently, malaria is endemic in 85 countries, mainly in tropical and subtropical areas, where 

it  mainly  affect  poor  communities,  especially  pregnant  women and children,  and causing 

devastating social and economic consequences (WHO 2021).

Plasmodium vivax is the most commonly malaria-causing Plasmodium species in the 

world and is implicated in relapses of the disease (Angrisano & Robinson 2022, Rougeron et 

al. 2022).  P. falciparum is recognized as the main cause of severe forms of the disease, being 

the most lethal species (Howes et al. 2016, Pais et al. 2022). 

Some factors have been implicated in the pathogenesis of malaria, but one of the key 

processes  contributing  to  the  severity  of  the  disease  is  excessive  production  of  reactive 

oxygen and nitrogen species (RONS) in the host organism (Moreira et al. 2021, Gomes et al. 

2022), Indeed, RONS can impact antioxidant defenses, promoting important cellular damage, 

including  the  reduction  of  red  blood  cell  deformability  causing  consequent  hemolysis, 

metabolic acidosis, severe anemia, and cerebral malaria (Haldar et al. 2007, Srivastava et al. 

2015, Kumar et al. 2018). Ultimately, it may lead to the death of the host (Quadros Gomes et 

al. 2015, Barbosa et al. 2021).

Studies have found that populations in malaria endemic areas are more susceptible to 

complications of the disease, especially those caused by P. falciparum, because they have low 

plasma  concentrations  of  several  micronutrients  important  for  host-defense  mechanisms, 

including vitamin A and zinc, in addition to antioxidants such as ascorbic acid (vitamin C), 

vitamin E (α-tocopherol) and carotenoids such as lycopene (LYC) and β-carotene (Adelekan 

et al. 1997, Nussenblatt et al. 2002).  

Among carotenoids, LYC stands out a potent mobilized antioxidant, which has been 

shown to reduce oxidative stress and prevent excessive production of RONS, especially those 

involved in malaria (Miller et al. 1996, Anguelova & Warthesen 2000). LYC is an essential 

micronutrient  for  living  organisms,  and  its  primary  source  is  photosynthetic  organisms, 

including green plants, algae, and cyanobacteria, being found in greater quantity in tomatoes 

and derivatives (Cohn et al. 2004, Wang et al. 2020).
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LYC has analogues, including cis and trans isomers and apo-lycopenols, such as apo-

10’lycopenoic acid (Lian & Wang 2008, Rodriguez & Rodriguez-Amaya 2009, Reynaud et al. 

2011). Both isomers are non-cyclic liposoluble hydrocarbons with saturated and unsaturated 

lateral  chains,  which  offer  greater  reactivity  with  RONS  (Novikov  et  al.  2022).  These 

carotenoids have potent activities, including antioxidant (Sy et al. 2012, Catalano et al. 2013), 

anti-inflammatory (Feng et al. 2010, ElAshmawy et al. 2018), anticancer (Aust et al. 2003, 

Cheng et al. 2020), cardioprotector (Ferreira-Santos et al. 2018), hepatoprotector (Ni et al. 

2020),  nephroprotector  (Karahan et  al.  2005),  neuroprotector  (Yin et  al.  2014, Paul et  al. 

2020),  antidiabetic  (Guo et  al.  2015),  anticataract  (Mohanty  et  al.  2002),  and cholesterol 

reduction (Renju et al. 2014), being more potent than β-carotene or α-tocopherol (Liu et al. 

2008, Erdman et al. 2009).

Additionally,  a  significant  antiparasitic  effect  of  LYC  has  been  reported  in 

experimental  infection  with P.  falciparum  in  vitro  (Agarwal  et  al.  2014).  Other  studies 

suggest that treatment with antioxidants may improve antiparasitic immune response (Val et 

al.  2015,  Dkhil  et  al.  2019).  However,  it  is  unclear  whether  LYC  stimulating  actions 

demonstrated in in vitro studies, such as RONS inhibition and apoptosis induction, may occur 

in in vivo malaria.

Thus,  this  is  the first  study to clarify  whether  LYC is an appropriate  candidate  to 

antimalarial adjuvant, capable of reducing oxidative stress in male Balb/c mice infected with 

P. berghei ANKA, a  murine malaria  strain,  responsible for inducing in  mice a syndrome 

similar to that caused by P. falciparum in humans, and that it is well characterized in regards 

of the involvement of oxidative mechanisms in its pathophysiology. 

MATERIALS AND METHODS

We used 175 male mice of the species Mus musculus and Balb/c breed, adults, 7-10 weeks 

old,  weighing  between  25  and  40g,  from the  Vivarium of  the  Evandro  Chagas  Institute 

(Ananindeua,  ParáBrazil).  The animals  were housed in  the Experimental  Vivarium of  the 

Oxidative Stress Research Laboratory (LAPEO) of the Institute of Biological Sciences (ICB) 

of the Universidade Fededral do Pará (UFPA), at room temperature of 24±2°C, light/dark 

cycle of 12 hours (lights from 7:00h to 19:00h), and free access to food and water. Before any 

experimental procedure, the animals were acclimated to laboratory conditions for 15 days.
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The  project  was  approved  by  the  Ethics  Committee  on  the  Use  of  Experimental 

Animals of UFPA (CEUA/UFPA; protocol 3235130919), and the animals were manipulated 

and cared for in accordance with the ethical standards of animal experimentation set forth by 

the Brazilian Society of Laboratory Animal Science. 

Preparation and administration of lycopene and N-acetylcysteine

The LYC administration protocol was chosen based on a dose-response study on the effects of 

LYC supplementation on oxidative stress biomarkers (Devaraj et al. 2008), and the dose was 

calculated by allometric extrapolation (Nair & Jacob 2016). The animals received 3.11mg/kg 

b.w./day of LYC via gavage (Table I).

The  N-acetylcysteine  (NAC)  administration  protocol  was  chosen  based  on  a 

randomized, doubleblind, placebo-controlled study of chronic obstructive pulmonary disease 

(Zheng et al. 2014) and the dose was calculated by allometric extrapolation (Nair & Jacob 

2016). The animals received 62mg/kg b.w./day of NAC via gavage (Table I).

The  antioxidant  drug  NAC  has  been  proposed  as  adjunctive  treatment  in  severe 

falciparum malaria both  in vitro and  in vivo studies (Watt et al. 2002, Treeprasertsuk et al. 

2003, Arreesrisom et al. 2007, Quadros Gomes et al. 2015) and, therefore, was employed as 

standard in this study.

Treatment with both substances was started 24 hours before infection of the animals 

with Plasmodium berghei, being repeated every 24 hours, until the day before the euthanasia 

of the animals.
Table I. Method for the calculation of allometric extrapolation of doses to be administered to mice (Balb/c, 
body weight of 0.025 kg).

A: dose calculation by allometric extrapolation – 
Lycopene

B: dose calculation by allometric extrapolation – 
N-acetylcysteine

Basal Metabolic Rate of reference animal (BMR man):
BMR man = k x m0.75 = 70 x 700.75 = 70 x 24.20 

BMR man = 1.694 kcal
BMR of target animal (BMR mice):

BMR mice = k x m0.75 = 70 x 0.0250.75 = 70 x 0.063 
BMR mice = 4.4 kcal

Total Dose indicated in the literature (TD):
TD = DOSE man ÷ BMR man = 30 ÷ 1.694 

TD = 0.0177 mg/kcal
TD of the target animal (TD mice):

TD mice = TD x BMR mice = 0.0177 x 4.4 
TD mice = 0.077 mg of Lycopene

Therefore, the total dose of lycopene indicated to one 
mouse of 0.025 kg is 0.077 mg (or 3.11 mg/kg), which 

BMR man:
BMR man = k x m0.75 = 70 x 700.75 = 70 x 24.20 

BMR man = 1.694 kcal

BMR mice:
BMR mice = k x m0.75 = 70 x 0.0250.75 = 70 x 0.063 

BMR mice = 4.4 kcal 
TD:

TD = DOSE man ÷ BMR man = 600 ÷ 1.694 
TD = 0.354 mg/kcal 

TD mice:
TD mice = TD x BMR mice = 0.354 x 4.4 
TD mice = 1.55 mg of N-acetylcysteine

Therefore, the total dose of N-acetylcysteine indicated 
to one mouse of 0.025 kg is 1.55 mg (or 62 mg/kg), 
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was administered every 24 h. which was administered every 24 h.
A: Taking as reference the adult man (Homo sapiens; average weight of 70 kg; proposed lycopene dose = 
30 mg) is taken as reference.  B: Taking as reference the adult man (Homo sapiens; average weight of 70 
kg;  dose  of  N-acetylcysteine  proposed =  600 mg).  k  = constant  of  large  taxonomic groups  (placental  
mammals = 70); m = body mass.

Malaria induction

The Plasmodium berghei ANKA (Pb) strain was originally supplied by the Evandro Chagas 

Institute (Ananindeua, Pará-Brazil).  For the infection, 1x106 red blood cells infected  by P.  

berghei  ANKA  were  injected  intraperitoneally  (i.p.)  into  mice,  and  their  survival  and 

parasitemia rates were monitored. The day of infection was defined as day 0.

Animals and experimental groups

175 mice were randomly distributed into 4 groups (Figure 1), including: Sham (n=28): 

mice that received just the vehicle (water; gavage) and non-parasitized red blood cells (i.p.); 

Pb (n=49): mice that received just the vehicle (water; gavage) and Pb-infected red blood cells 

(i.p.);  LYC+Pb (n=49): mice treated with 3.11mg/kg b.w./day of LYC (gavage) and infected 

with Pb (i.p.);  NAC+Pb (n=49): mice treated with 62mg/kg b.w./day of NAC (gavage) and 

infected  with  Pb (i.p.).   Each group was  subdivided into  4  subgroups,  depending on the 

number of days of follow-up of the group, and the animals of these subgroups underwent 

euthanasia after 1, 4, 8, or 12 days after infection.

Due to the high mortality expected for the subgroups of animals with longer infection 

periods (groups Pb, LYC+Pb, and NAC+Pb), their subgroups 1 and 4 days were composed of 

7 animals each. Subgroups 8 and 12 days consisted of 15 and 20 animals, respectively.  Since 

they would not undergo infection, all subgroups of the Sham group consisted of 7 animals.
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Figure 1. Schematic representation of the experimental design. LYC: Treatment with lycopene; NAC: 
Treatment with N-acetylcysteine.

Determination of survival rate

At the end of the period of 1, 4, 8 and 12 days, the survival rate was calculated by equation 1:

 Survival rate (%) = number of infected animals aliveat theend of the study
totalnumber of infected animals aliveat the beginingof the study  ×100  

(1)

Determination of parasitemia

At the end of the period of 1, 4, 8, or 12 days, 30μL of blood was collected by puncture of the 

caudal  vein to  produce blood smears,  which were fixed with methanol  (Dynamics,  Cat  # 

1230) and stained with Giemsa (10%; Merck, Cat #1092041022). Parasitemia was determined 

by cell counting using the optical microscope (1000X), allowing to evidence the presence of 

the  parasite  within  red  blood  cells.  After  counting,  the  percentage  of  parasitemia  was 

calculated using equation 2:

 Parasitemia (%) = number of infected erythrocytestotal number of erythrocytes  ×100 (2)

Statistical analysis

Data were expressed as mean ± standard deviation.  All data were compared and analyzed 

using the one-way Variance Analysis test (ANOVA). Significant differences were compared 

between the groups, through Tukey’s post-hoc test. In all tests, a significance level of 5% was 

considered (p ≤ 0.05).

RESULTS

Effect of lycopene on survival rate

The survival rate of Pb group animals decreased from 100% on the 4th day to 46.7% on the 8th 

day after infection, and on the 12th day after infection it further decreased to 45%. On the 

other hand, animals treated with NAC presented a survival rate of 93.3% and 70% on days 8 
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and 12 post-infection, respectively, higher than the animals of the Pb group on the same days 

(p<0.0001). Additionally, animals treated with LYC exhibited a survival rate of 80% on both 

days  8  and  12  post-infection.  In  addition,  LYC  increased  the  survival  of  the  animals 

significantly (p<0.0001) in relation to Pb group on days 8 and 12 post-infection and NAC+Pb 

group, on day 12 post-infection (Figure 2).

Effect of lycopene on the progression of parasitemia

Figure  3  shows  the  evolution  of  parasitemia  in  the  Pb,  LYC+Pb,  and  NAC+Pb  groups. 

Parasitemia progressively evolved in all groups, but the rate of progression was significantly 

lower  in  animals  treated  with  LYC during  the  study  period  (p<0.0001).  In  addition,  the 

animals  treated  with  LYC  showed  a  significant  reduction  in  parasitemia  (p<0.0001),  in 

relation to the Pb group on days 4, 8, and 12 postinfection and NAC+Pb group on day 12 

post-infection (Figure 3).
Figure 2. Survival rate of Balb/c mice infected 
with Plasmodium berghei ANKA treated with 
lycopene  (LYC)  or  N-acetylcysteine  (NAC). 
The ANOVA test, followed by Tukey’s post-
hoc test, was used to compare the Shan, Pb, 
LYC+Pb  and  NAC+Pb  groups.   bp<0.0001 
versus Pb  group  and  NAC+Pb;  cp<0.0001 
versus Pb group;  γp<0.0001  versus Pb group 
and  NAC+Pb;  €p<0.0001  versus Pb.  Sham 
group: untreated and uninfected animals; Pb: 
animals injected (i.p.) with 106 red blood cells 
infected with  Pb;  LYC+Pb:  animals  treated 
with  3.11  mg/kg  b.w./day  of  lycopene  and 
infected with Pb; NAC: animals treated with 
62 mg/kg b.w./day of NAC and infected with 
Pb.

Figure 3. Temporal evolution of parasitemia of 
Balb/c mice infected with Plasmodium berghei 
ANKA (Pb) and treated with lycopene (LYC) or 
N-acetylcysteine  (NAC).  The  ANOVA  test, 
followed by Tukey’s post-hoc test, was used to 
compare  the  Pb,  LYC,  and  NAC  groups. 
#p=0.0090 versus Pb group; bp<0.0001 versus Pb 
group; cp<0.0001 versus Pb and LYC+Pb group; 
γp<0.0001  versus Pb  and  NAC+Pb  group; 
€p<0.0001  versus Pb.  Sham  group:  untreated 
and  uninfected  animals;  Pb:  animals  injected 
(i.p.) with 106 red blood cells infected with Pb; 
LYC+Pb:  animals  treated  with  3.11  mg/kg 
b.w./day of  LYC and infected with Pb; NAC: 
animals treated with 62 mg/ kg b.w./day of NAC 
and infected with Pb.
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DISCUSSION

Many of LYC’s reported health benefits are attributed to its potent antioxidant activity, which 

includes  effects  such  as  cardioprotection,  hepatoprotection,  antidiabetc,  anti-atherogenic, 

neuroprotective and anticancer (Duzen et al. 2019, Yin et al. 2019, Fu et al. 2020, Xue et al.  

2021, Alhoshani et al. 2022, Mannino et al. 2022).

The antioxidant activity of LYC was also demonstrated in the pathogenesis of malaria 

in  children  (Das  et  al.  1996).  Additionally,  studies  conducted  by  Agarwal  et  al.  (2014), 

evidenced the in vitro cytotoxic effect of LYC against P. falciparum.

In the present study we used Balb/c mice as the vertebrate host for Pb to evaluate the 

effect of LYC supplementation on the evolution of parasitemia and survival in these animals.

The concentration used to evaluate the effect of LYC supplementation was chosen 

based  on  a  dose-response  study,  which  demonstrated  the  beneficial  effects  of  LYC  on 

oxidative stress biomarkers after daily intake of 6.5mg, 15mg, or 30mg of LYC (Devaraj et al. 

2008). Since the daily intake of 30mg of LYC presented maximum antioxidant effect against 

oxidative stress, this concentration was used as a parameter for the calculation of allometric 

extrapolation, leading to the establishment of the LYC dose of 3.11mg/kg body weight, which 

was given daily until the day before euthanasia of the animals.

It was demonstrated a progressive increase in parasitemia in the Pb group during the 

period of 12 days after infection. In addition, a high degree of parasitemia was observed on 

the 12th day, reaching percentages of 40.1%. Notwithstanding, it was observed that on days 8 

and 12 post-infection, 53.3% and 55% of the animals in this group died, respectively.

Additionally,  the  parasite  count  in  peripheral  blood  may  have  underestimated  the 

actual  picture  of  parasitemia,  since  parasite  populations  may  have  been  trapped  inside 

microvessels of the spleen, kidneys, liver, lungs, and brain (Zaid et al. 2020), leading to lower 

availability of infected cells within the blood stream.

Previous studies have shown that children and adults with malaria generally have a 

high  prevalence  of  malnutrition  and  micronutrient  deficiencies,  including  vitamin  A,  β-

carotene, LYC and zinc (Thurnham & Singkamani 1991, Zeba et al. 2008), and this situation 

creates a complexity of interactions with serious consequences for the health of the host. 
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According to Nacer et al.  (2012), in addition to pallor, biliverdine secretion in the 

urine, arched posture, and lethargy, hyperparasitemia also leads to brain complications and 

death.

Another important factor is the exaggerated production of RONS during the disease. 

Pathophysiological changes in malaria escalate during the erythrocytic cycle. At this stage, 

parasites invade erythrocytes, consume and hydrolyse intraerythrocyte hemoglobin, seeking 

the amino acids for its own development (Tekwani & Walker 2005).

After  the  breakdown  of  the  protein,  ferrous  iron  (Fe2+)  from  the  released 

ferroprotoporphyrin  can  be  rapidly  oxidized  to  ferric  iron  (Fe3+),  giving  rise  to 

ferriprotoporphyrin IX, which undergoes oxidation and reduction reactions, producing RONS, 

such as superoxide (O2
•-),  hydroxyl  (OH•),  nitric  oxide (NO), peroxynitrite  (ONOO-),  free 

radicals of highly reactivity (Müller 2004, Klonis et al. 2013).

Antioxidants  can  antagonize  the  deleterious  effects  of  RONS  and  restore  redox 

balance, but in malaria infection this defense is totally tampered due to the high metabolic rate 

of  the  parasite,  which  grows and multiplies  rapidly,  generating  large  amounts  of  RONS, 

leading to the consumption and decrease of the host’s antioxidant defense system (Delhaye et 

al. 2016).

As  a  consequence  of  this  intracellular  process,  there  is  a  reduced  erythrocyte 

deformability,  which  cause  erythrocyte  hemolysis,  and  additional  release  of  RONS  to 

extracellular medium, causing damage to other cellular structures, including membrane lipids, 

proteins, and DNA (Cadet et al. 2010, Rahal et al. 2014).

In the present study, animals treated with LYC showed a survival rate higher than the 

Pb and NAC+Pb groups on days 8 and 12 post-infection. We believe that this prophylactic 

activity of LYC is due to the elimination of RONS, which has been cited as a crucial factor in 

this stage of malaria development (Quadros Gomes et al. 2015, Al-Shaebi et al. 2018). 

According to the present results, animals supplemented with LYC up to the 12 th day 

presented the development of parasitemia at a slower rate compared to that observed in the Pb 

group. Moreover, LYC displayed antiparasitic potential higher than those of groups Pb and 

NAC+Pb in the 12th day post-infection.

Indeed, the delay in the induction and progression of parasitemia caused by treatment 

with LYC suggests its prophylactic and antiparasitic activity, which may be due to a cytotoxic 

effect of LYC against malaria parasites (Agarwal et al. 2014), as  the reduction of parasitemia 

may be associated with increased plasma LYC concentration in these animals (Metzger et al. 
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2001).  In fact, the lipophilic characteristic of LYC can also favor its interaction with the lipid 

bilayer of the cell  membrane (Sy et al.  2012) facilitating its absorption in tissues such as 

brain, heart,  liver, spleen, lung, and kidneys, preventing them from the damage caused by 

parasite and/or RONS (Guo et al. 2019). Therefore, antioxidants such as LYC can block the 

damage triggered by RONS by sharing electrons with RONS, subsequently neutralizing them 

(Jain et al. 2018). 

Corroborating to the present results, previous studies have shown the preventive effect 

of  LYC (10mg/kg,  orally)  on  lipid  peroxidation,  oxidative  damage  to  DNA,  and  on  the 

histopathological  changes  in  liver  of  animals  submitted  to  treatment  with  ferric 

nitrilotriacetate  (Matos  et  al.  2001).  Ateşşahin  et  al.  (2006),  also  stated  that  10  days  of 

treatment  with  LYC  (4mg/kg/day)  prevented  cisplatin-induced  lipid  peroxidation  in  rat 

testicles. Moreover, data from our laboratory demonstrated that NAC supplementation to Pb-

infected mice prevented the oxidative changes imposed by the infection, suggesting that NAC 

may display antioxidant properties or that it is involved in redox signaling processes (Varela 

& Percário 2022).

In face  of  these  results,  it  is  possible  to  suggest  that  LYC can act  in  both  ways:  

protecting against infection-induced damage, creating an antioxidant defense line in the host 

organism, inducing improvement of clinical parameters observed in supplemented animals, 

and by a direct antiparasitic effect of LYC against the parasites themselves, as suggested by 

Agarwal et al. (2014). Therefore, we suggest an important role of LYC supplementation both 

in malaria prevention and treatment.

The  data  obtained  in  the  present  study  provide  strong  evidence  that  lycopene  is 

effective against  P. berghei  infection and suggest that lycopene may become an important, 

viable,  and safe strategy for the development  of a biotechnological  product with effective 

action  in  the  prevention  and auxiliary  treatment  of  malaria  and other  diseases,  but  more 

studies are needed to prove these potential benefits.
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Abstract:  (1)  Background:  The  severity  of  malaria  is  associated  with  low 
bioavailability of antioxidants and high concentration of free radicals that induce 
oxidative  damage  in  cerebral  and  pulmonary  microcirculation.  This  can  be 
prevented by the action of consumable antioxidants present in foods. Therefore,  
we investigated the protective role of lycopene (LYC) on the oxidative changes 
induced  by  Plasmodium  berghei (Pb);  (2)  Methods:  Mice  were  infected  by 
intraperitoneal injection of 106 parasitized red blood cells and treated via gavage 
with  LYC  (3.11mg/kg  bw/day)  or  NAC  (62mg/kg  bw/day).  They  were  then 
evaluated  for  1,  4,  8  or  12  days  after  infection.  Levels  of  thiobarbituric  acid 
reactive substances (TBARS), antioxidant capacity by inhibition of ABTS radicals 
(AC-ABTS) and DPPH (AC-DPPH), uric acid (UA), and nitric oxide (NO) were 
measured in brain and lung tissues; (3) Results: The infection caused oxidative 
stress confirmed by increased levels of TBARS, AC-ABTS, AC-DPPH, UA, and 
NO in the tissues leading to the death of the animals. LYC prevented the increase 
in TBARS, UA, and NO levels compared to Pb (p<0.0001) and NAC+Pb groups 
(p<0.0001), reaching values similar to those of Sham animals;  (4) Conclusions: 
These  results  are  striking  evidence  of  the  beneficial  effect  of  lycopene 
supplementation  on  oxidative  stress  in  experimental  malaria  in  vivo  and 
emphasize the importance of antioxidant supplementation in the treatment of 
the disease.

Keywords: Lycopene; N-Acetylcysteine; Malaria; Oxidative stress; Antioxidant.
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1. Introduction
Free radicals are intermediate species with unpaired electrons. The production of these molecules 

in  the  human  body  is  inevitable,  since  many  of  these  molecules  originate  from  the  process  of  
physicochemical oxidation of molecular oxygen (O2) and/or molecular nitrogen (N2), leading to the 
production  of  reactive  oxygen  and  nitrogen  species  (RONS)  [1].  RONS  are  highly  oxidizing 
intermediates  produced  continuously  in  biological  systems  from biochemical  reactions,  including 
nitric oxide (NO) synthesis and mitochondrial electron transport chain reactions, as well as by metal-
catalyzed oxidation and reduction, among others [2].

The main RONS generated in the human body are superoxide anion (O 2
•−), hydrogen peroxide 

(H2O2), hydroxyl radical (OH•), singlet oxygen (1O2), NO, nitrogen dioxide (NO2) and peroxynitrite 
(ONOO−)  [3].  There  are  other  biologically  important  free  radicals  such  as  lipid  hydroperoxide 
(ROOH), lipid peroxyl radical (ROO•), and lipid alkoxyl radical (RO•).

The unpaired electrons give RONS high instability and reactivity. As a result, they have a short 
half-life  of  milliseconds  or  less,  but  enough time to trigger  intermolecular  interactions,  as  well  as 
responses  in  nearby  target  cells,  leading  to  oxide-reduction  reactions,  altering  and/or  damaging 
biomolecules, cells and tissues [4].

In response to the production of RONS, the human body induces the synthesis of mobilizable 
antioxidants that act by preventing, neutralizing or reducing the oxide-reduction reactions of RONS in 
the body  [5,6].  Three enzymes are critical  in this  process,  including superoxide dismutase  (SOD), 
catalase (CAT), and glutathione peroxidase (GSH-Px). These mobilizable antioxidants, respectively, 
neutralize O2

•− and break down H2O2 or ROOH into harmless molecules such as H2O, alcohol, and O2 

[7].
However, when these antioxidants are not at adequate and sufficient levels to compensate for the 

harmful effects of RONS, oxidative stress is  installed in the body. Oxidative stress is  therefore an 
imbalance between RONS and antioxidants in favor of RONS [8]. Oxidative stress is involved in: 1- 
Beneficial  effects,  such  as  the  body's  immune  defense  system  through  toxic  action  on  invading 
pathogens;  2-  Harmful  effects,  leading  to  an  interruption  of  redox  signaling  and  control  and/or 
molecular  damage in  chronic,  degenerative,  neurodegenerative,  metabolic,  and infectious diseases 
[4,7].

In this context, studies have discussed the role of RONS and antioxidant defense mechanisms in  
malaria  [9] Malaria is a potentially serious disease, causing more than 200 million malaria episodes 
and about  500,000  deaths  annually  (Figure  1), mostly  in  impoverished  communities  [10] Among 
others, Plasmodium falciparum and Plasmodium vivax pose the greatest threat to human health.

Figure 1. Timeline of the number of cases (above) and number of deaths (below) of malaria in the 
world.

Studies  have  associated  the  action  of  RONS with  the  various  pathological  manifestations  in 
malaria,  which  can  range  from  nonspecific  symptoms,  such  as  fever  and  mild  anemia,  to  the 
complications of severe  malaria,  which include coma, prostration,  respiratory difficulty,  metabolic 
acidosis, renal failure, liver damage, and severe anemia [11–13].

According to SUZUKI et  al.  [14] the  pathophysiological  changes evident  in malaria infection 
occur because mobilizable antioxidants are drastically reduced or consumed in oxidation-reduction 
reactions with RONS during infection. 

Other factors  evidenced in the  infection are  preponderant  for  the high production of  RONS, 
including ischemia and reperfusion syndrome (IRS), parasite metabolism, as well as body's immune 
response against the parasite itself [5,6,12].
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During infection, the parasites invade red blood cells and feed on hemoglobin, their main source 
of amino acids. As a consequence, red blood cells lose their function due to severe hemolysis. This 
eventually  releases  heme  (Fe2+)  into  the  circulation.  Heme  can  react  with  O2 and  generate  O2

•−, 
subsequently  increasing H2O2 levels  through spontaneous dismutation,  as well  as  increasing HO• 

levels [15]. The increase in these RONS mediates the oxidation of lipids, proteins, and DNA, resulting 
in cellular and tissue damage, endothelial dysfunction, and loss of vascular homeostasis [16,17].

RONS can also activate toll-like receptor-4 (TLR4), triggering immune response. According to Ty 
et al. [18], RONS are a key factor into triggering the immune response during infection. According to 
the authors, immune cells are activated, including neutrophils and macrophages, which engulf and 
kill the parasites through the respiratory burst. One of the main responsible for this action is NO. 

NO is a gaseous free radical, with an extremely short half-life in tissues, ranging from 3 to 10 
seconds, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). In macrophages NO 
synthesis is usually low, however, in response to infection, inducible nitric oxide synthase (iNOS) is 
activated, which can result in large amounts of NO produced over hours or days [19].

In addition to macrophages, endothelial, and neuronal cells synthesize NO, but at a constant rate,  
regardless  of  physiological  demand.  In  endothelial  cells,  NO  is  synthesized  by  endothelial  NOS 
(eNOS), acting as an important vasodilator, being able to increase the vascular permeability of smooth 
muscles [20]. Meanwhile, in neuronal cells, neuronal nitric oxide synthase (nNOS), releases NO which 
can act as a neurotransmitter [21]. 

However,  in  malaria  the  high  production  of  NO  favors  its  reaction  with  O2
•−,  even  at  low 

concentrations, to produce highly oxidizing ONOO−, which can act locally on the underlying vascular 
smooth muscle or on monocytes or platelets, promoting apoptosis in the microvascular endothelium 
and cytoadherence [22]. Localized action occurs because the parasites express cytoadhesion factors on 
the surface of infected red blood cells, allowing the binding and sequestration of red blood cells in the 
postcapillary venules, promoting vascular occlusion and tissue hypoxia [23]. Another important point 
to be considered is the fact that NO can interact reversibly with hemoglobin, which acts as an O2 

sensor  and regulator  of  vascular  tone  in  response  to  local  O2 partial  pressure,  binding  to  heme, 
generating nitrate and methemoglobin,  which is  unable to bind and carry O2 for tissue perfusion, 
further potentiating ischemia, hypoxia, and anemia [24].

Thus, phagocytosis and the consequent action of RONS including O2
•− and NO, as  well as other 

toxic products,  can aggravate the condition due to the rupture of parasitized erythrocytes,  during 
which  uninfected  normal  erythrocytes  can  also  be  destroyed,  stimulating  cytoadherence  and 
consequently potentially blocking blood flow and  leading to metabolic acidosis,  renal failure, liver 
damage, and severe anemia [5,11,12,19].

Cellular  damage produced by oxidative  stress  can be prevented or  reduced by the action of 
consumable antioxidants present in food. Vitamins, including vitamins E and C, phenolic substances,  
such as flavonoids and resveratrol, carotenoids, including β-carotene and lycopene (LYC), and drugs 
such as N-acetylcysteine (NAC), among others, belong to this category [5,6]. 

Recent interest in carotenoids has focused on the role of LYC in human health. LYC is a natural,  
monounsaturated,  lipophilic  carotenoid  synthesized  by  vegetables  and  fruits,  such  as  tomatoes, 
watermelons, and carrots  [25]. Tomatoes and tomato products are the main source of LYC and are 
considered  an  important  source  of  carotenoids  in  the  human  diet  [26]. It  is  widely  used  as  a 
supplement  in  functional  foods,  nutraceuticals,  and  pharmaceuticals,  as  well  as  an  additive  in 
cosmetics [27,28].

LYC has potent activities, including antioxidant [29,30],  anti-inflammatory  [31], anticancer  [32], 
neuroprotective [33], cardioprotector  [34] and cholesterol reducers, and its concentration in multiple 
tissues is extremely important for these effects [35].

Consumable carotenoids react with a wide range of radicals, such as O2
•−, OH•, NO, and ONOO− 

by electron transfer, producing radicals with lower oxidizing capacity, or they can lead to hydrogen 
atom transfer generating neutral radicals  [36,37]. This antioxidant action of LYC is favored by the 
conjugate double bond contained in its structure, which confers high antioxidant capacity, which is 
about 100 times greater than that of vitamin E [26].
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Several  studies  have  indicated  an  association  between  LYC use  and a  decrease  in  oxidative 
changes  [38–40].  According  to  Pan et  al.  [41] the  strong  antioxidant  activity  was  able  to  prevent 
cyclosporine-induced intestinal injury in mice by increasing antioxidant activity and decreasing the 
concentration of malondialdehyde (MDA), NO, interleukin (IL)-1β, IL-6, and tumor necrosis factor-
alpha (TNF-α). These data reinforce the importance of LYC in the prevention of oxidative stress in 
malaria [6].

Thus,  this study sought to  clarify the possible  antioxidant mechanisms of LYC, to determine 
whether LYC is an appropriate antimalarial candidate capable of reducing oxidative stress in male 
Balb/c  mice  infected  with  P. berghei,  a  strain  of  murine  malaria  responsible  for  inducing  in  the 
experimental animal model a syndrome similar to that caused by P. falciparum in humans and that is 
well characterized regarding the involvement of oxidative mechanisms in its pathophysiology. In this 
sense, this study provides evidence that, in mice with P. berghei-induced malaria, treatment with the 
carotenoid lycopene was able to improve several biochemical biomarkers related to oxidative stress.  
The levels of uric acid (UA), thiobarbituric acid reactive substances (TBARS), and NO in infected mice  
treated with LYC decreased below the levels found in the untreated infected animals, or those treated  
with NAC, reaching values similar to those of the non-infected animals. To the best of our knowledge, 
this study is the first to demonstrate important findings on the benefits of a therapy based on the 
natural compound lycopene for the management of biochemical changes in experimental malaria in  
vivo.

2. Results
Our data showed that  P. berghei infection induced a significant increase in the level of TBARS 

compared to the Sham group in brain and lung tissues on days 4, 8, and 12 post-infection (p < 0.0001; 
Figure 2). Both the LYC+Pb and NAC+Pb groups have significantly lower TBARS levels than the Pb 
group in both tissues (p < 0.0001). In addition, the LYC treatment provided an apparent normalization 
in the level of TBARS in the treated animals, which was similar to the values presented by the animals 
of the Sham group in both brain and lung tissues.

(Brain) (Lung)

Figure 2. Concentration of thiobarbituric acid reactive substances (TBARS) in the brain and lungs of mice infected 
with  P.  berghei, treated  or  not  with  lycopene  or  N-acetylcysteine.  Data  are  expressed  as  means  ±  standard  
deviation. 1 day: Vp ≤ 0.02 versus Sham; op ≤ 0.005 versus Pb. 4 days: *p ≤ 0.001 versus Sham; #p < 0.0001 versus Pb; &p 
< 0.0001 versus LYC+Pb. 8 days: ap ≤ 0.0002 versus Sham; bp < 0.0001 versus Pb; cp < 0.0001 versus LYC+Pb. 12 days: 
∆p < 0.0001 versus Sham; γp < 0.0001 versus Pb; €p <0.0001 versus LYC+Pb.

In Figure 3 we observed that P. berghei infection led to a significant increase in AC-ABTS and AC-
DPPH in animals of the Pb group compared to the Sham group in brain and lung tissues (p < 0.0001). 
In the LYC supplemental group, a significant decrease in the level of AC-ABTS and AC-DPPH was  
observed in relation to the Pb group in both tissues (p < 0.0001), presenting behavior close to that  
exhibited  by  the  Sham  group  in  both  tissues.  However,  after  treatment  with  NAC,  a  significant  
increase in the level of AC-ABTS was observed in the brain tissue compared to the Sham and LYC 
groups (p < 0.0001).
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(Brain) (Lung)

Figure 3. Antioxidant capacity (AC) by inhibition of ABTS and DPPH radicals in the brain and lungs of mice 
infected with P. berghei, treated or not with lycopene or N-acetylcysteine. Data are expressed as means ± standard 
deviation. 1 day: Vp < 0.0001 versus Sham; op ≤ 0.005 versus Pb; rp < 0.0001 versus LYC+Pb. 4 days: *p ≤ 0.0001 versus 
Sham; #p ≤ 0.01  versus Pb;  &p ≤ 0.02  versus LYC+Pb.  8 days:  ap < 0.0001  versus Sham;  bp < 0.0001  versus Pb;  cp < 
0.0001 versus LYC+Pb. 12 days: ∆p ≤ 0.005 versus Sham; γp ≤ 0.001 versus Pb; €p <0.0001 versus LYC+Pb.

Figure  4 shows  that  P.  berghei induced  a  significant  increase  in  NO  levels  in  the  Pb  group 
compared to the Sham group in both tissues throughout the study period (p < 0.0001). After treatment 
with LYC, a significant reduction in the level of NO in brain tissue was demonstrated compared to the 
Pb and NAC+Pb groups (p < 0.0001). In addition, LYC led to normalization of the NO level in brain 
tissue. On the other hand, in the lung tissue, LYC induced a significant increase in the level of NO 
compared to the other groups (p < 0.0001).

(Brain) (Lung)

Figure 4. Nitric oxide concentration in the brain and lungs of mice infected with P. berghei, whether or not treated 
with lycopene or N-acetylcysteine. Data are expressed as means ± standard deviation.  1 day:  Vp < 0.0001 versus 
Sham; op< 0.0001 versus Pb; rp < 0.0001 versus LYC+Pb. 4 days: *p < 0.0001 versus Sham; #p < 0.0001 versus Pb; &p < 
0.0001 versus LYC+Pb. 8 days: ap < 0.0001 versus Sham; bp < 0.0001 versus Pb; cp < 0.0001 versus LYC+Pb. 12 days: ∆p 
< 0.0001 versus Sham; γp < 0.0001 versus Pb; €p <0.0001 versus LYC+Pb.
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Figure  5 shows  that P.  berghei induced  a  significant  increase  in  UA  levels  in  the  Pb  group 
compared to the Sham group in both tissues (p < 0.0001). On the other hand, LYC supplementation 
induced a significant reduction (p < 0.0001) of UA levels in relation to the Pb group in both tissues,  
and to the NAC+Pb group in the brain tissue. Treatment with lycopene provided a normalization of 
UA levels in both tissues, as well as NAC in lung tissue up to the eighth day of treatment.

(Brain) (Lung)

Figure 5.  Uric  acid  concentration  in brain and lungs  of  animals  infected  with  P.  berghei treated or  not  with 
lycopene or N-acetylcysteine. Data are expressed as means ± standard deviation. 1 day: Vp ≤ 0,0001 versus Sham; 
Op ≤ 0.005 versus Pb; rp < 0.0001 versus LYC+Pb. 4 days:  *p ≤ 0.0007 versus Sham; #p ≤ 0.02 versus Pb; &p < 0.0001 
versus LYC+Pb.  8 days:  ap < 0.0001 versus Sham;  bp < 0.0001 versus Pb;  cp < 0.0001 versus LYC+Pb.  12 days:  ∆p < 
0.0001 versus Sham; γp < 0.0001 versus Pb; €p < 0.0001 versus LYC+Pb.

3. Discussion
Malaria causes  more than 500,000 deaths every year,  most  of  them due to brain and/or lung 

complications  induced  by  P.  falciparum infection.  In  order  to  understand  the  pathophysiology 
involved in malaria, experimental infection in an mice model with P. berghei infection has been widely 
used for  many studies  due to its  ability to induce oxidative  biochemical  changes,  including lipid 
peroxidation  and/or  decreased  antioxidant  capacity  in  vital  organs  such  as  lung  and  brain,  with 
several similarities to the human disease [42,43].

In order  to  investigate  whether substances  with antioxidant  potential  could reduce oxidative 
biochemical  changes during malarial  infection,  Balb/c  mice were induced to malaria by  P. berghei 
inoculation, and treated with LYC or NAC. 

Because  NAC  is  a  drug  widely  indicated  for  the  treatment  and/or  prevention  of  several 
respiratory diseases and is involved in the reduction of oxidative stress in diseases including human 
immunodeficiency virus (HIV) infection, influenza A/H1N1 virus, and malaria, it was used in our 
study as a standard substance [44–47]. On the other hand, LYC, as an orally administered antioxidant 
agent,  was  tested  for  its  antioxidant  activity  in  mice  infected  with  P.  berghei and  its  action  was 
compared to the effects of NAC. LYC is a carotenoid present in foods such as tomatoes, watermelon,  
guava,  among other  foods,  which  an antioxidant  potential  approximately  twice  the  activity  of  β-
carotene [48]. Its antioxidant property contributes to optimizing health status and reducing the risk of  
oxidative stress-based diseases such as cancer and malaria [38,49].

In this study, our data evidenced that LYC and NAC improved several biochemical biomarkers  
related to oxidative stress. However, LYC presented a more intense effect than NAC. LYC induced a 
reduction  in  the  levels  of  UA,  TBARS,  and NO  in  mice  with  malaria,  leading  to  concentrations 
significantly lower than those found in untreated infected animals,  or in those treated with NAC, 
reaching values similar to those of uninfected animals. In this study, we confirmed important data on 
the in  vivo benefits of a therapy based on this natural compound for the management of oxidative 
biochemical changes in experimental malaria. 

Although there is still no consensus on the precise mechanism responsible for malaria severity, 
studies indicate that both the host and the parasite are under oxidative stress, due to the increase in  
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circulating RONS, produced during the inflammatory response by cells such as activated monocytes 
and neutrophils, and mainly due to the degradation of hemoglobin by the parasite [6,12,50–52].

During infection, the parasite is able to develop rapidly, because by consuming hemoglobin from 
the host erythrocyte, degrades it into amino acids, which are used for its nutrition. Fe 2+, also released 
in the cytosol, undergoes Fenton and Haber-Weiss reactions favored by the presence of O 2, generating 
RONS  including  O2

•−,  H2O2 and  OH•.  These  RONS  can  then  induce  lipid  peroxidation,  impair 
microvessel endothelial cells, and cause other important tissue damages [16,17].

In our study,  we demonstrated that  the experimental  malaria induced by  P. berghei infection 
caused a detrimental effect on the oxidative biochemical parameters studied in  mice, resulting in an 
increase in the levels of TBARS, AC-DPPH, AC-ABTS, NO, and UA, which was expected, because, 
according to BAPTISTA et al.  [53] about 60% of mice infected with  P. berghei succumb to malaria 
between days 6 and 8 post-infection with moderate parasitemia between 6 and 11%.

To verify possible oxidative biochemical changes caused by RONS, we measured TBARS in lung 
and brain tissues of infected BALB/c mice. TBARS are mainly reactive α and β unsaturated aldehydes,  
such as MDA, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, and are products of the 
decomposition  of  polyunsaturated  fatty  acid  hydroperoxides  and  laboratory  markers  of  lipid 
peroxidation,  which  occurs  by  the  action  of  RONS  on  lipids  and,  therefore,  demonstrates  the 
occurrence of oxidative stress [54]. 

Our data showed that the Pb group had a significantly higher level of TBARS than the Sham 
group in brain and lung tissues (p < 0.0001; Figure 2), reinforcing the action of RONS as an important 
mediator of oxidative biochemical changes caused by experimental malaria infection.

Previously, Reis et al.  [46] reported increased production of MDA and conjugated dienes in the 
brains of C57BL/6 mice infected with Pb, indicating the occurrence of oxidative stress. Fernandes et al. 
[55] correlated  increased  plasma  levels  of  reactive  aldehydes  in  Pb-infected  mice  with  malaria 
severity. Scaccabarozzi et al. [56] showed that infection with Pb in C57BL/6J mice induced at the same 
time biochemical  changes in liver and lung tissue,  as well  as leading to acute respiratory distress 
syndrome,  due to an exacerbated excessive  oxidative  response,  demonstrated by the  alteration of 
mobilizable  antioxidant  enzymes  and  the  increase  in  MDA levels.  Recently,  Chuljerm  et  al.  [57] 
reported elevated levels of TBARS in the plasma and livers of Pb-infected mice.

Our findings indicate that in  P. berghei infected mice an excessive oxidative response seems to 
predominate, demonstrated by the increase in TBARS levels, which is an index of loss of structure and 
integrity of the cell  membrane of brain and lung tissues,  and these changes were related to high 
parasitemia.  

However,  treatments  with  LYC and NAC significantly  reversed  (p  <  0.0001)  the  increase  in 
TBARS concentration when compared to the Pb group (Figure 2). In addition, LYC treatment brought 
the TBARS level to similar values exhibited by the animals in the Sham group, which suggests that  
LYC may be successful in eliminating RONS, inhibiting lipid peroxidation, and protecting membrane 
lipids from oxidative damage in brain and lung of mice during malarial infection.

These data are in line with previous findings in the literature in which it has been reported that  
both LYC and NAC are able to reduce endogenous oxidant levels and protect cells against a wide 
range of pro-oxidative insults  [58,59] by reacting directly with RONS [60]. According to Zhang [61], 
LYC has the ability to inhibit  oxidative stress and TBARS, limiting the production of RONS. LYC 
activity has also been implicated in the elimination of P. falciparum in vitro  [49]. However, the direct 
effect of LYC on the proliferation of the parasite in vivo is unclear. On the other hand, the antioxidant 
activity of NAC may have involved the direct action of its free thiol (SH) group, which can act as an 
electron donor, favoring the interaction of NAC with RONS.

By  promoting  cellular  aggression  processes,  parasites  can  readily  alter  the  concentration  of 
mobilizable antioxidants in the body, triggering endogenous defense mechanisms against oxidative 
aggression. The action of these molecules helps protect biological membranes, which are susceptible to 
lipid peroxidation and oxidative damage in general. Mobilizable antioxidants include enzymes such 
as SOD, which dismutates O2

•− into H2O2, CAT, and GSH-Px, which break down H2O2 and ROOH into 
poorly reactive molecules, such as H2O, alcohol, and O2, as well as other non-enzymatic molecules 
such as reduced glutathione (GSH) [5,6].



75

In this sense, we found a significant increase in AC-ABTS and AC-DPPH in animals in the Pb 
group compared to the Sham group in brain and lung tissues (p < 0.0001;  Figure 3). The significant 
increase in AC-ABTS and AC-DPPH in the present study may reflect an adaptive response of the 
animal organism to an increased demand for mobilizable antioxidants, possibly to combat the RONS 
generated during P. berghei infection. 

Reinforcing these results, we found a significant positive correlation between the concentrations 
of TBARS versus AC-ABTS (r = 0.4; p < 0.0001) and TBARS versus AC-DPPH (r = 0.5; p < 0.0001) in the  
Pb  group.  The  increase  in  antioxidant  capacity  may  have  occurred  due  to  the  action  of  Pb  on 
mobilizable enzymes or due to the high level of RONS, such as H2O2, O2

•−, OH•, ONOO−, which form 
within cells in response to Pb infection.

On the other hand, LYC supplementation led to a significant decrease in the level of AC-ABTS 
and AC-DPPH in relation to the Pb group in both tissues (Figure 3). Additionally, the level of AC-
ABTS and AC-DPPH was restored by treatment in  the LYC+Pb group in brain and lung tissues.  
Similarly,  to  what  occurred  for  infected  and  untreated  animals,  after  treatment  with  NAC,  a 
significant increase in the level of AC-ABTS in brain tissue was observed compared to the Sham and 
LYC+Pb groups. In the lung tissue, NAC restored the level of AC-ABTS to the levels presented by the 
animals of the Sham group.

In view of these findings, it can be suggested that, in mice infected with Pb, the administration of 
LYC may decrease the activity of mobilizable antioxidants, as a result of cellular redox regulation after 
the ingestion of exogenous antioxidants. On the other hand, NAC, being an analogue and precursor of 
GSH,  may have induced the replacement  of intracellular  levels  of  GSH,  also known as  the  main 
antioxidant produced by the body and which protects cells from oxidative stress.

In this context, some studies report that, in diseases in which oxidative stress is a pathogenic 
mediator, such as Alzheimer's, Parkinson's, Chagas, dengue, and malaria, the actions of mobilizable 
antioxidants are not sufficient to maintain an adequate cellular redox balance [62–65].

To counteract the deleterious effects of RONS, supplementation with consumable antioxidants,  
including  vitamins  E  and C,  phenolic  substances  such  as  flavonoids  and resveratrol,  carotenoids 
including β-carotene and LYC, and drugs such as NAC, are essential for maintaining optimal cellular 
function. LYC is a potent antioxidant that also has anti-inflammatory, anti-atherogenic, antidiabetic, 
neuroprotective, and anticancer effects  [31,32,34,39,66–68].

Antioxidants can act by increasing the concentration of other antioxidants in the body, donating 
electrons to the RONS and neutralizing them, binding directly to RONS and inactivating them, or also 
by preventing the cascade of formation of highly reactive RONS, such as OH• and ONOO− [69]. 

These RONS are reported to be a key factor in triggering the devastating inflammatory response  
that  has  been associated with disease  progression and subsequent  fatal  outcome  [70].  RONS also 
appear to act as second messengers in a signaling cascade and can activate mononuclear cells, as well 
as macrophages and dendritic cells that stimulate the release of High Mobility Group Box-1 (HMGB-1) 
into the intra- and extracellular space [18]. 

 According to Techarang et al.  [71] increased expression of HMGB-1 in endothelial cells  may 
stimulate several receptors, including RAGE, TLR-4, and TLR-2, which activate nuclear factor kappa B 
(NF-κB) leading to the production of TNF-α, interferon-gamma (IFN-γ), IL-1β, and IL-6, involved in 
the pathogenesis of malaria.

These  inflammatory mediators  can  also  stimulate  the  activation of  iNOS in  macrophages.  In 
macrophages, iNOS activity is normally low, but the expression of this enzyme is greatly stimulated 
by the release  of inflammatory mediators  such  as  IF  N-γ,  in  response to infection,  leading to an 
increased NO concentration [72].

NO is recognized as a mediator in a wide range of biological systems, plays an important role in 
the maintenance and regulation of bronchomotor tone by non-adrenergic and non-cholinergic neural 
mechanisms  (NANC),  and  acts  as  an  important  vasodilator  in  the  vascular  endothelium  [73].  In 
addition, it is essential for the phagocytic function of macrophages, generating oxidizing molecules  
such as ONOO− with the ability to destroy invading pathogens. 

Despite participating in the body's defense when produced by macrophages, in our study the 
increase in NO concentration was not correlated with a decrease in parasitemia. According to our 
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results, there was a significant increase (p < 0.0001) in NO levels in the Pb group compared to the  
Sham group in both tissues throughout the study period (Figure 4). Therefore, it is possible that the 
exaggerated production of NO may have generated harmful effects to the animal organism, including 
generalized  vasodilation  resulting  in  hypotension  and  oxidative  changes  resulting  from  ONOO−, 
highly reactive, capable of inducing peroxidation of membrane lipids. 

However, after treatment with LYC, a significant reduction in the level of NO in brain tissue was 
observed  in  comparison  with  Pb  and  NAC+Pb  groups  (Figure  4).  In  addition,  LYC  led  to 
normalization of the NO level in brain tissue. In lung tissue, LYC led to an increase in NO levels in the 
LYC+Pb group compared to the other groups.

LYC is an extremely hydrophobic molecule with a high capacity to permeate the double layer of 
phospholipids of the plasma membrane, and can accumulate in different tissues, such as the brain 
[74]. According to studies, LYC can be absorbed by passive diffusion and active process in which the 
transporter of the scavenger receptor protein class B type 1 (SR-B1) is involved [38,75]. Additionally, it 
has a long chain with 11 double conjugate links, which makes it an excellent scavenger for RONS, 
such as 1O2, O2

•−, OH•, NO2  and ONOO− [76,77].
In view of our results, it is possible that lycopene crosses the blood-brain barrier of the central 

nervous  system and exerts  neuroprotective  effects  against  oxidative  changes induced by malarial 
infection. Additionally, lycopene serves as an efficient antioxidant, acting on antioxidant defense in 
brain tissue by binding to RONS, inactivating them and preventing the reaction chains that lead to the 
formation of 1O2,  O2

•−,  OH•,  NO2,  and ONOO− highly deleterious to the body.  In lung tissue,  we 
believe that LYC can decompose O2

•− and thus prevent the production of ONOO− and tissue oxidative 
nitration,  releasing NO to promote vascular  vasodilation, contributing to tissue perfusion and the 
arrival  of  more  defense  cells  and  lycopene  molecules  in  the  tissue.  Therefore,  lycopene  may 
accumulate and exert protective effects on the pulmonary and cerebral vasculature.

Previous studies have shown the protective role of NO in the hemodynamic improvement of 
cerebral microcirculation and the reduction of vascular pathology in cerebral malaria [78,79]. On the 
other  hand,  in  malarial  infection,  ONOO− can  induce  protein  nitration,  depletion  of  consumable 
antioxidants, peroxidation of the microvascular endothelium [22], resulting in the marked decrease in 
blood flow leading to ischemia and subsequent hypoxia, vasospasms, and tissue hypoperfusion along 
with cell-mediated congestion, resulting in pulmonary edema and stroke [80,81].  In addition, tissue 
ischemia may result from cytoadhesion caused by Plasmodium infection [5,12].

Prolonged  hypoxia  ceases  oxidative  phosphorylation  in  the  mitochondria,  promoting  ATP 
degradation and accumulation of xanthine oxidase (XO) and hypoxanthine. In an attempt to restore 
tissue oxygenation, the body stimulates the expression of eNOS to increase the production of NO, 
aiming at tissue reperfusion. However, when the blood supply is resumed, XO acts on hypoxanthine 
resulting in the production of O2

•−, H2O2, and uric acid, the latter being used in the present study as a 
marker of the occurrence of IRS. On such IRS, O2

•− can still react with NO generating ONOO− [82].
In this context, our data indicated that Pb infection was able to induce a significant increase in UA 

levels in the Pb group compared to the Sham group in both tissues (p < 0.0001; Figure 5). On the other 
hand, LYC supplementation induced a significant reduction (p < 0.0001) of UA levels in relation to the 
Pb group in both tissues, and to the NAC+Pb group in the brain tissue. In addition, treatment with 
LYC provided a normalization in the levels of UA in both tissues, as well as NAC in the lung tissue,  
suggesting its role in the prevention of damage caused by IRS.

These results are in agreement with previous studies that showed elevated UA levels in children  
infected with P. falciparum during acute episodes and with disease severity, suggesting that UA is an 
important mediator in the pathophysiology of malaria [83].

4. Materials and Methods
A total of 231 adult male mice of the species Mus musculus and Balb/c breed, 7-10 weeks of age, 

weighing between 25 and 40g (Vivarium of the Evandro Chagas Institute, Ananindeua, Pará-Brazil) 
were  used.  The  animals  were  housed  in  the  Experimentation  Vivarium  of  the  Oxidative  Stress 
Research Laboratory (LAPEO) of the Institute of Biological Sciences (ICB) of the Federal University of 
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Pará (UFPA), with an ambient temperature of 24±2°C, a 12-hour light/dark cycle (lights from 7 a.m. to 
7  p.m.),  and  free  access  to  food  and  water.  Before  any  experimental  procedure,  animals  were 
acclimatized to laboratory conditions for 15 days.

All experimental procedures were performed at LAPEO. The animals were handled and cared for 
in accordance with the ethical standards of animal experimentation indicated by the Brazilian Society 
of Laboratory Animal Science. The project, filed under No. 3235130919, was approved by the Ethics  
Committee on the Use of Animals of UFPA (CEUA/UFPA).

2.1. Protocol for the preparation and administration of lycopene and N-acetylcysteine
The lycopene preparation and administration protocol  was chosen  based on a dose-response 

study on the effects of lycopene supplementation on biomarkers of oxidative stress [84], and the dose 
was calculated by allometric extrapolation  [85]. Animals received 3.11mg/kg of body weight/day of 
lycopene via gavage.

The  N-acetylcysteine  preparation  and  administration  protocol  was  chosen  based  on  a 
randomized, double-blind, placebo-controlled study of chronic obstructive pulmonary disease  [86], 
and the  dose  was  calculated by allometric  extrapolation  [85].  Animals  received 62mg/kg of body 
weight/day of NAC via gavage.

Mice in the LYC+Pb and NAC+Pb groups were pretreated with a dose of 3.11mg/kg bw/day of 
LYC  or  62mg/kg  bw/day  of  NAC  via  gavage,  respectively,  twenty-four  hours  before  infection. 
Treatments then continued daily until the day before the animals were euthanized. Mice of the Sham 
group received only vehicle (water) via gavage.

2.2. Plasmodium berghei ANKA -infection protocol 
The mice of the groups PB, LYC+Pb and NAC+Pb were performed by intraperitoneal injection 

(i.p.) of 106 P. Berghei ANKA-parasitized red blood cells (pRBC). On the other hand, the Sham group 
animals received 106 of non-parazitated red blood cells.

2.3. Protocol for subdivision of the experimental groups
In an experiment of 1, 4,  8 or 12 days of consecutive follow-up, 231 male mice (Balb/c)  were 

randomly assigned to 4 groups (Figure 6), including Sham (n=28): mice received the vehicle (water; 
gavage) and non-parasitized red blood cells (i.p.); Pb (n=49): mice infected with P. berghei ANKA (i.p.); 
LYC+Pb (n=49): mice treated with  LYC (gavage) and infected with  P. berghei  (i.p.);  NAC+Pb (n=49): 
mice treated with NAC (gavage) and infected with P. berghei (i.p.).

The subgroups 1- and 4-days were formed by 7 animals each. The 8- and 12-days subgroups were 
formed by 15 and 20 animals, respectively, due to the higher mortality expected for these subgroups.

Figure 6. Schematic representation of the experimental protocol. Balb/c mice were pretreated with lycopene or N-
acetylcysteine  prior  to  inoculation  with  106 erythrocytes  parasitized  with  Plasmodium  Berghei ANKA,  and 
treatment continued daily until the day before euthanasia, for 1, 4, 8 or 12 consecutive days. After euthanasia , 
brain and lungs were collected for biochemical analyses: Antioxidant Capacity Equivalent to Trolox by inhibition 
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of ABTS (AC-ABTS) and DPPH (AC-DPPH) radicals . TBARS=  Thiobarbituric Acid Reactive Substances;  UA= 
Uric Acid; NO= Nitric Oxide.

2.4. Euthanasia Protocol and Sample Preparation
At  the  end  of  each  study  period,  each  animal  was  anesthetized  intraperitoneally,  using  a 

combination  of  0.5  mL  of  10%  ketamine  hydrochloride  (9  mg/kg)  +  0.25  mL  of  2%  xylazine 
hydrochloride (10 mg/kg) + 4.25 mL of water for injection. After confirmation of unconsciousness and 
loss of corneal reflex, animals were euthanized by exsanguination through intracardiac puncture.

Subsequently, both lungs were extracted, as well as the brain of each animal. The organs were  
weighed and added phosphate saline-buffer solution (PBS) in a ratio of 1:10 (m:v). Subsequently, the 
ultrasonic disruption of tissues was performed to obtain a homogenate. After homogenization, the 
material was centrifuged at 2,500 rpm for 10 minutes and the supernatant was collected, stored in an 
Eppendorf microtube, and frozen at -20ºC until assayed.

2.5. Biochemical Measurements Protocol
2.5.1. Thiobarbituric acid reactive substances (TBARS)

The method was carried out according to the fundamentals proposed by Kohn and Liversedge 
[87], with chemical conditions of the reaction adjusted according to Percário et al.  [88]. This method 
evaluates lipid peroxidation and has been used as an indicator of oxidative stress. The test is based on 
the reaction of thiobarbituric acid (4,6-Dihydroxypyrimidine-2-thiol, TBA; Sigma-Aldrich; T5500; São 
Paulo/SP) with by-products of lipid peroxidation (e.g. MDA), at acidic pH (2.5) and high temperature 
(94°C), forming chromogens with absorbance at 535 nm.

Initially, 0.5 mL of the sample or standard was mixed with 1 mL of the TBA solution (10 mM).  
Then, this solution was placed in a water bath at 94ºC for 60 minutes. Subsequently, 4 mL of n-butyl  
alcohol were added, the solution was stirred in a vortex-type agitator, then centrifuged at 3000 rpm for 
10  minutes.  After  that,  3  mL  of  the  supernatant  was  transferred  to  the  cuvette  and  then  
spectrophotometry was performed at 535 nm (Spectrophotometer 800XI; Femto; São Paulo/SP).

A  standard  curve  (1,1,3,3,  tetrahydroxypropane;  standard  MDA;  20  µM;  Sigma-Aldrich 
Chemical; 108383; São Paulo/SP) was performed in triplicate and, from the values found, the equation 
of the line (y = 0.1419x − 0.0037) was calculated, where y represents the absorbance value and x the 
concentration value, obtaining R2 = 0.9999. From the equation of the line, the concentration of TBARS 
of the samples was determined.

2.5.2. Antioxidant capacity by radical ABTS•+ inhibition (AC-ABTS)
It was carried out according to the initial foundations proposed by Miller et al. [89], with reaction 

conditions modified by Re et al. [90]. The method is based on the ability of substances to eliminate the 
radical  cation  2,2'-azino-bis  (3-ethylbenzothiazoline-6-sulfonic  acid)  diammonium  salt  (ABTS•+),  a 
blue-green chromophore with maximum absorption at 734 nm, resulting in the formation of the stable  
product ABTS, which is colorless. 

Initially, the ABTS•+ solution (2.45 mM) was prepared from the reaction between ABTS (7 mM; 
Sigma-Aldrich;  A1888;  São  Paulo/SP)  and  potassium  persulfate  (140  mM;  K2O8S2;  Sigma-Aldrich; 
216224; São Paulo/SP). Then, the initial reading (T0) of the ABTS•+ solution was performed in an 800XI 
spectrophotometer (Femto; São Paulo/SP) at 734 nm. Then, 30 µL of sample or standard was added to 
the solution and, after 5 minutes, the final reading (T5) was performed.

A  standard  curve  (6-hydroxy-2,5,7,8-tetramethylcromono-2-carboxylic  acid;  Trolox®;  2.5mM; 
Sigma-Aldrich; 23881-3; São Paulo/SP) was performed in triplicate and, from the absorbance values 
found, the equation of the line (y = 0.4324x + 0.0049) was obtained, where y represents the absorbance 
value and x the concentration value, obtaining R2 = 0.9997. From the equation of the line, the AC-ABTS 
of the samples was determined.

2.5.3. Antioxidant capacity by radical DPPH• inhibition (AC-DPPH)
The test  was performed according to the adapted method proposed by Blois  [91] This  assay 

evaluates the total  antioxidant capacity of synthetic or  natural substances  to eliminate the DPPH• 
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radical  (Sigma-Aldrich;  D9132;  São  Paulo/SP),  a  violet  chromophore  with  absorption  at  517nm, 
resulting in the formation of the hydrogenated product DPPH, which is yellow or colorless. 

First, the DPPH• solution (0.1 mM) was prepared from the reaction between DPPH (394.32 g/mol; 
Sigma-Aldrich;  A1888;  São  Paulo/SP)  and ethyl  alcohol  (P.A.;  C2H6O;  Sigma-Aldrich;  216224;  São 
Paulo/SP).  Subsequently, the DPPH• solution was read in an 800XI spectrophotometer (Femto; São 
Paulo/SP) at 517 nm. Then,  50 µL of the sample or standard was mixed in 950 µL of the DPPH• 

solution and placed in a water bath at 30°C for 30 minutes. After this period, the second reading was  
held.

A standard curve (Trolox; 2.5mM) was performed in triplicate and, from the absorbance values 
found, the equation of the line was obtained: y = 0.2041x − 0.0031, where y represents the absorbance  
value and x, the concentration value, obtaining R2  = 0.9973. From the equation of the line, the AC-
DPPH was determined in the samples.

2.5.4. Nitric oxide (NO)
The NO concentration was determined indirectly by the detection of nitrate (NO3

−)  or nitrite 
(NO2

−) in the samples, using the NO colorimetric assay kit (Elabscience®, Catalog No: E-BC-K035-M). 
NO  is  readily  oxidized  to  form  nitrite  in vivo or  in  aqueous  solution,  which  can  react  with  the 
chromogenic reagent nitrate, forming a pale red compound. The concentration of the compound is  
linearly related to the concentration of NO in the sample. 

Initially, 100 µL of sample or standard was mixed with 200 µL of reagent 1 (sulfate solution), and 
100 µL of reagent 2 (alkaline reagent). After resting for 15 minutes, the solution was centrifuged at 
3000 rpm for 10 minutes. Then, 160 µL of the supernatant was transferred to the microplate, where 80 
µL of the  chromogenic  reagent  was added.  After  15 minutes  of  incubation at  room temperature,  
spectrophotometric readings were performed at 550 nm.

A standard curve (sodium nitrite;  100 µM) was performed in triplicate and,  from the values 
found, the equation of the line was obtained (y = 0.0022x − 0.0005), where y represents the absorbance 
value  and  x,  the  concentration  value,  obtaining  R2  =  0.9987.  From  the  equation  of  the  line,  the 
concentration of nitric oxide in the samples was determined. 

2.5.5. Uric acid (UA)
The  procedure  was  performed  using  the  Liquiform  Uric  Acid  Kit  (Labtest).  The  technique 

consists of the oxidation of uric acid by uricase producing allantoin and H2O2. H2O2 in the presence of 
peroxidase reacts with 3,5-dichloro-2-hydroxybenzene sulfonate acid (DHBS) and 4-aminoantipyrine 
to  form  the  antipyrylquinonymine  chromogen.  The  intensity  of  the  red  color  formed  is  directly 
proportional to the concentration of uric acid in the sample.

To perform the assay, 0.02 mL of the sample or standard was mixed in 1 mL of uric acid working  
reagent (4-aminoantipyrine, peroxidase,  sodium azide, DHBS,  and uricase).  The solution was then 
incubated in a water bath at 37°C for 5 minutes. Then, absorbances were determined using an 800XI 
spectrophotometer (Femto; São Paulo/SP) at 505 nm. 

A standard curve (Uric acid; 20mg/dL) was performed in triplicate and, from the values found, 
the equation of the line was obtained (y = 0.0166x + 0.0012), where y represents the absorbance value  
and x, the concentration value, obtaining R2 = 0.9986. From the equation of the line, the concentration 
of UA in the samples was determined.

2.6. Statistical analysis

For each parameter analyzed, the analysis of possible outliers was performed by calculating the 
interquartile range, in which the difference between the third quartile (Q3) and the first quartile (Q1) 
was determined, called dj. Any value lower than Q1-3/2dj or greater than Q3+3/2dj was considered to 
be  discrepancies,  and was  not  considered  in  the  statistical  calculations.  After  the  analysis  of  the 
discrepant points, normality was assessed using the Levene test. For homoscedastic distribution, the 
Analysis  of  Variance  (ANOVA) test  was applied,  and for  heteroscedastic  dispersion,  the Kruskal-
Wallis  test  was applied.  Significant  differences were compared between the groups using Tukey's 
post-hoc test.



80

In the intragroup temporal progression analysis, the unpaired Student's t-test was performed. To 
verify  the  possible  correlation  between  parameters,  Pearson's  correlation  test  was  performed, 
considering the paired values of two parameters obtained for the same animal, and the calculations 
were performed with the data obtained from all animals simultaneously, according to the group to 
which they belong.  For the pairs  of  values  in which  there was suspicion  of a linear  relationship, 
regression analysis was performed, using all animals in both groups simultaneously and each group 
individually. In all tests, a significance level of 5% (p≤0.05) was considered.

5. Conclusions
Lycopene prevented oxidative  damage induced by  Plasmodium berghei in brains  and lungs of 

mice,  restoring  the  levels  of  NO,  TBARS,  and  antioxidant  molecules,  as  well  as  preventing  the 
occurrence  of  ischemia  and  reperfusion  syndrome in  infected  animals.  These  results  are  striking 
evidence  of  the  beneficial  effect  of  lycopene  supplementation  on  oxidative  stress  in  experimental 
malaria in vivo and emphasize the importance of antioxidant supplementation in the treatment of the 
disease.

Thus,  lycopene  may  become  an  important  viable,  safe,  and  innovative  strategy  for  the 
development of therapeutic alternatives to mitigate the damage caused by malarial infection.
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5 CAPÍTULO IV: DISCUSSÃO INTEGRATIVA

A malária é uma doença que afeta milhares de pessoas em todo o mundo todos os 

anos. Sua patogênese está associada à produção de espécies reativas de oxigênio e nitrogênio 

(ERON) e níveis  mais  baixos  de micronutrientes  e  antioxidantes  humana (TORRE  et  al., 

2018;  VANDERMOSTEN  et  al., 2018).  Pacientes  com  infecção  mista  por  Plasmodium 

falciparum e  P.  vivax (ou  P.  ovale),  sob  tratamento  medicamentoso  como  por  exemplo 

artemeter  +  lumefantrina  ou  artesunato  +  mefloquina,  que  são  drogas  esquizonticidas 

sanguíneas eficazes para todas as espécies, associando-as à primaquina por sete dias, podem 

apresentar  altos  níveis  de  biomarcadores  de  estresse  oxidativo  nos  tecidos  do  corpo 

(ABOLAJI et al., 2013, 2016), o que limita o uso desses medicamentos. 

Diante disso, estudos  de Herbas et al. (2010) e Chuljerm et al. (2021) sugeriram que a 

inibição de ERON, aumentando a capacidade antioxidante do hospedeiro, pode representar 

uma estratégia terapêutica adjuvante no tratamento desses pacientes  (HERBAS et al., 2010; 

CHULJERM  et  al.,  2021).  Nesse  sentido,  a  suplementação  com compostos  antioxidantes 

como zinco,  selênio  ou vitaminas  A,  C ou E foram sugeridos  como parte  do tratamento 

(SHARMA et al., 2012). 

Entre  os  antioxidantes  alimentares,  o  licopeno  (LYC)  tem  se  destacado  entre  os 

principais carotenoides, pois pode apresentar cerca do dobro da atividade antioxidante do β-

caroteno (BÖHM et al., 2002). Além disso, por estar presente em altas contrações em um dos 

alimentos mais consumidos pela população, que é o tomate.

Na busca de evidencias cientificas que confirmassem o potencial efeito antioxidante 

do LYC, o presente estudo realizou uma vasta revisão da literatura, na qual foi demonstrado o 

efeito antioxidante do LYC em várias doenças nas quais o estresse oxidativo está implicado 

como uma causa, incluindo câncer (CHENG et al., 2020), doença crônicas associadas a idade 

como a doença de Alzheimer (QU et al., 2016; ZHAO et al., 2018; HUANG et al., 2019) e 

hipertensão  (FERREIRA-SANTOS  et  al.,  2018),  uveite  (GÖNCÜ  et  al.,  2016),  Doença 

hepática  gordurosa  não  alcoólica  (MARTÍN-POZUELO  et  al.,  2015;  NI  et  al.,  2020), 

aterosclerose (RENJU et al., 2014; LIU et al.,  2021), diabetes  (NEYESTANI  et al., 2007), 

entre outras. Além disso, foram fornecidas informações relevantes sobre possíveis mecanismo 

de ação descritos para o LYC e ainda, uma justificativa baseada em evidências experimentais 
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de  que  o  LYC é  eficaz  contra  a  infecção  malárica  induzida  por  P.  falciparum  in  vitro 

(AGARWAL et al., 2014).

Na revisão da literatura, também, foram descritos alguns dos principais mecanismos 

que induzem o estresse oxidativo durante a malária, destacando a produção de ERON como 

um mecanismo de defesa contra a infecção, induzida pela síndrome da isquemia-reperfusão, o 

metabolismo do parasita e o metabolismo dos medicamentos antimaláricos. 

Também,  para  confirmar  experimentalmente  os  efeitos  da  infecção  malárica  e 

corroborar com a literatura acerca do papel importante da suplementação de micronutrientes 

na  prevenção  da  malária,  foram realizadas  a  infecção  malárica  de  camundongos  machos 

Balb/c com a cepa de P. berghei ANKA. Esta espécie induz a infecção malárica em roedores, 

sendo capaz de induzir uma síndrome em animais semelhante à causada pelo  P. falciparum 

em humanos e que está bem caracterizada quanto ao envolvimento de mecanismos oxidativos 

em sua fisiopatologia. Além disso, foram realizados o pré-tratamento desses animais com uma 

dose de 3,11mg/kg de peso corporal/dia de LYC ou 62mg/kg pc/dia de N-acetilcisteina, e os 

tratamentos  desses  animais  continuaram  diariamente  durante  1,  4,  8  ou  12  dias  após  a 

infecção.

Em  nosso  estudo,  foi  utilizada  a  NAC  como  uma  substancia  padrão.  O  fármaco 

antioxidante NAC tem sido proposto como um adjuvante ao tratamento da malária severa em 

ambos estudos  in vitro e  in vivo  (WATT  et al.,  2002; TREEPRASERTSUK  et al.,  2003; 

ARRESRISOM et al., 2007; GOMES et al., 2015).

Após o período de infecção e tratamento, avaliamos o percentual da parasitemia e a 

taxa de mortalidade dos camundongos. Os resultados confirmaram que, a infecção malárica 

induzida  pelo  Pb,  foi  capaz  de  aumentar  progressivamente  a  parasitemia  de  0,6%, 5,6%, 

15,8% e 40% nos dias 1, 4, 8 e 12 pós-infecção, respectivamente. Observamos também, que 

taxa de mortalidade dos camundongos infectados foi elevada, de 47% e 45% no 8° e 12° dia 

pós-infecção, respectivamente.

Apesar da elevação da parasitemia, a contagem de parasitos no sangue periférico pode 

ter subestimado o quadro real da parasitemia, uma vez que as populações de parasitos podem 

ter ficado aderidas dentro de microvasos do baço, rins, fígado, pulmões e cérebro (ZAID et  

al,. 2020), levando a menor disponibilidade de células infectadas na corrente sanguínea. Por 

outro lado, a presença de parasitos nesses órgãos pode ter sido o responsável pela elevada taxa 

de mortalidade apresentado pelos animais infectados pelo Pb.
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Os camundongos  do grupo Pb também apresentaram declínio  progressivo do peso 

corporal  associado  à  incidência  de  piloereção,  olhos  lacrimejantes  e  fechados,  palidez, 

descoloração das orelhas, alteração da cor do sangue de vermelho escuro para vermelho claro, 

postura arqueada e letargia efetiva a partir do 6º dia. e 8 dias após a infecção, até o final do 

estudo.  A  presença  de  urina  escura  também  foi  observada  nestes  animais,  embora  sua 

incidência tenha sido inconsistente em todos os animais.

A partir desses dados, sugere-se que a palidez e a alteração da cor do sangue podem 

ser resultadas de anemia grave, e a piloereção pode estar relacionada ao estado hipotérmico 

durante a infecção, porque o mecanismo homeostático está se adaptando à perda de calor. O 

escurecimento da urina neste modelo pode ser devido à congestão no córtex e na medula renal 

durante a infecção  (BASIR  et al., 2012). É possível, também, que essas alterações estejam 

relacionadas à interferência dos parasitas no influxo de nutrientes aos tecidos, resultando em 

perda de peso, postura arqueada e letargia.

Nesse sentido, estudos anteriores demonstraram que crianças e adultos com malária 

têm geralmente uma elevada prevalência  de desnutrição e deficiências de micronutrientes, 

incluindo  vitamina  A,  β-caroteno,  LYC e  zinco  (THURNHAM E SINGKAMANI,  1991; 

ZEBA  et  al.,  2008),  e  esta  situação  cria  uma  complexidade  de  interações  com  graves 

consequências para a saúde do hospedeiro.

Outro fator importante é a produção exagerada de ERON durante a doença, que são 

responsáveis por induzir alterações bioquímicas oxidativas, responsáveis pela  a redução da 

deformabilidade dos glóbulos vermelhos e consequente hemólise, acidose metabólica, anemia 

grave e malária cerebral (HALDAR et al., 2007; SRIVASTAVA et al., 2015; KUMAR et al., 

2018),  em  última  análise,  pode  levar  à  morte  do  hospedeiro  (GOMES  et  al.,  2015; 

BARBOSA et al., 2021).

Estas  alterações  fisiopatológicas  da  malária  têm início  com o ciclo  eritrocítico  da 

infecção.  Nesta  fase,  o  parasito  invade  o  eritrócito,  consome  e  hidrolisa  a  hemoglobina 

intraeritrocitária, formando aminoácidos necessários para o seu desenvolvimento (TEKWANI 

e WALKER, 2005). Após a quebra da proteína, o ferro ferroso (Fe2+) da ferroprotoporfirina 

liberada  pode  ser  rapidamente  oxidado  a  ferro  férrico  (Fe3+),  dando  origem  a 

ferriprotoporfirina IX, que sofre reações oxidação e redução, formando ERON, tais como os 

radicais livres superóxido (O2
•-), hidroxila (OH•), óxido nítrico (NO), peroxinitrito (ONOO-), 

altamente reativos (MÜLLER, 2004; KLONIS et al., 2013).
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Para corroborar as evidencias cientificas da literatura e confirmar nossa hipótese sobre 

alterações  bioquímicas  oxidativas  durante  a  infecção  malárica,  realizamos  análises 

experimentais de marcadores laboratoriais bioquímicos, no cérebro e pulmões dos animais os 

animais sobrevivementes, para quantificação da concentração de concentração de Substâncias 

Reativas ao Ácido Tiobarbitúrico (TBARS), atividade antioxidante pela inibição dos radicais 

ABTS (AC-ABTS) e DPPH (AC-DPPHA), Óxido Nítrico (NO) e Ácido Úrico (UA). 

De acordo com os resultados, a infecção malárica induzida pelo P. berghei foi capaz 

de  induzir  aumento  significante  no  nível  de  TBARS,  AC-DPPH,  AC-ABTS,  NO  e  UA 

comparado ao grupo Sham nos tecidos cerebral e pulmonar (p < 0,0001), o que eram achados 

esperados, pois, de acordo com estudos, cerca de 60% dos camundongos infectados com P. 

berghei sucumbem a malária entre os dias 6 e 8 pós-infecção com parasitemia moderada entre 

6  a  11%  (BAPTISTA  et  al.,  2010),  devido  ao  estresse  oxidativo (REIS  et  al.,  2010; 

FERNANDES et al., 2014; SCACCABAROZZI et al., 2018; CHULJERM et al., 2021). Por 

outro  lado,  o  tratamento  com o LYC reduziu  a  porcentagem de  parasitemia  e  a  taxa  de 

mortalidade dos camundongos infectados pelo Pb (p < 0,0001), para os quais o LYC exibiu 

maior potencial do que a NAC. Além disso, LYC e NAC melhoraram vários biomarcadores 

bioquímicos relacionados ao estresse oxidativo. No entanto, o LYC apresentou efeito mais 

intenso  que  a  NAC.  O  LYC  induziu  a  redução  dos  níveis  de  UA,  TBARS  e  NO  de 

camundongos com malária,  levando a concentrações inferiores às encontradas nos animais 

infectados sem tratamento ou naqueles tratados com a NAC, atingindo valores semelhantes 

aos dos animais não infectados. 

O  efeito  exercido  pelo  LYC  demonstra  que,  o  LYC  pode  ser  bem-sucedido  em 

eliminar as ERON, inibir a peroxidação lipídica e proteger os lipídios da membrana do dano 

oxidativo no cérebro e pulmão de camundongos durante a infecção malárica.

Estes dados estão alinhados com achados anteriores da literatura em que se relatou que 

ambos LYC ou NAC são capazes de reduzir os níveis de oxidantes endógenos e proteger as 

células  contra  uma  ampla  gama  de  insultos  pró-oxidativos  (EZERIŅA  et  al.,  2018; 

ELSAYED  et  al.,  2021),  reagindo  diretamente  com  as  RONS  (SAMUNI  et  al.,  2013). 

Segundo Zhang  et al. (2020), o LYC tem a capacidade de inibir o estresse oxidativo e as 

TBARS, limitando a produção de RONS. A atividade do LYC, também foi implicada na 

eliminação de P. falciparum in vitro (AGARWAL et al., 2014). Anteriormente, Metzger et al.  

(2001),  apontavam  que  o  aumento  da  concentração  plasmática  de  LYC  poderia  estar 

associado a depuração da parasitemia em crianças com malária. 
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Por outro lado, a atividade antioxidante da NAC pode ter ocorrido através da ação 

direta, do grupo tiol (SH) livre da NAC, que pode atuar como doador de elétrons, favorecendo 

a interação da NAC com ERON. Além disso, a NAC por ser um análogo e precursor da GSH, 

pode ter induzido a reposição dos níveis intracelulares de GSH, também conhecida como o 

principal  antioxidante  produzido  pelo  organismo  e  que  protege  as  células  do  estresse 

oxidativo.

Diante  dos  nossos  resultados,  é  possível  que  o  licopeno  atravesse  a  barreira 

hematoencefálica  para  o  sistema  nervoso  central  e  exerça  efeitos  neuroprotetores  contra 

alterações  oxidativas  induzidas  pela  infecção  malárica.  Adicionalmente,  devido  aos 

hidrocarbonetos altamente poli-insaturados existentes em sua estrutura, o licopeno atua como 

um eficiente  antioxidante  na  defesa  antioxidante  no  tecido  cerebral  se  ligando  às  ERON 

inativando-as e impedindo as cadeias reacionais que levam a formação de 1O2, O2
•‒, OH•, NO2 

e ONOO‒  altamente deletérias para o organismo. Já no tecido pulmonar, os dados sugerem 

que o LYC pode decompor o O2
•‒ e então prevenir a produção de ONOO‒ e nitração oxidativa 

tecidual, liberando o NO para promover vasodilatação vascular, contribuindo para perfusão 

tecidual  e chegada de mais  células  de defesa e  moléculas  do licopeno no tecido.  Através 

dessas  ações  o  licopeno  pode  acumular-se  e  exercer  efeitos  protetores  na  vasculatura 

pulmonar e cerebral.

Neste  estudo  confirmamos  dados  importantes  sobre  os  benefícios  in  vivo de  uma 

terapia baseada no fitonutriente licopeno para o manejo das alterações bioquímicas oxidativas 

na malária experimental. 
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