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Abstract The identification of fish species by non-
specialists remains a constant challenge for biodi-
versity management. In this regard, Robillard et  al. 
developed a machine learning computer vision model 
to identify Amazonian fish at the genus level, with 
an accuracy of 97.9%. Their model aimed to facili-
tate   fish identification by non-specialists, allowing 
them to contribute to collecting and sharing data for 
biodiversity management. However, when tested with 
a different set of fish pictures, their classifier was una-
ble to accurately identify fish photographs, resulting 

in 82% of  misidentification, and did not outperform 
what would be expected by chance, indicating that it 
is not suitable for the accurate identification of taxa 
in its current form. The results underscore the need 
for a balanced approach, combining automated tools 
with expert taxonomic input for accurate conservation 
decisions, emphasizing caution in relying solely on 
Artificial Intelligence methods. While acknowledging 
the potential of the model, we recommend restricting 
its application primarily to larger fish of commercial 
interest or scenarios where conservation decisions are 
less directly affected by the model’s identifications.
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Introduction

Performing accurate taxonomic assessments of 
freshwater fish biodiversity is a persistent challenge 
for conservation scientists and practitioners alike, 
especially in megadiverse regions such as the Ama-
zon Basin (Olden et  al. 2010; Silvano et  al. 2022). 
Identification relies on traditional methods of col-
lecting and identifying freshwater fish (i.e., regional 
inventories), which tend to be time-consuming and 
expensive and require high levels of training (Robil-
lard et al. 2023). Molecular methods, such as DNA-
barcoding and eDNA, have increased regional 

ichthyofaunal  knowledge and allowed rapid species 
inventories, however, both methods rely on the avail-
ability of voucher-based reference libraries with accu-
rately identified species (Zainal-Abidin et  al. 2022). 
Additionally, these methods require technology and 
sample processing infrastructure, which are deficient 
in many institutions in the global south, especially in 
many Amazonian institutions (Robillard et al. 2023). 
Further, but not less important, is the little participa-
tion of non-specialists, such as fishermen, the gen-
eral population, and citizen scientists in the role of 
documenting biodiversity. Enabling these agents 
to participate in collecting and sharing data would 
facilitate development of   policies and managing 
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decision-making (e.g., conservation measures) that 
better represent the stakeholders (Robillard et  al. 
2023).

In a recent publication, Robillard et al. (2023) pre-
sent computer vision models designed for Amazo-
nian fish identification based solely on photographs. 
These machine learning models, utilizing U-Net for 
image segmentation and a convolutional neural net-
work (CNN) for classification at the genus level, offer 
a practical and reliable alternative for simplifying fish 
identification. The authors advocate for a cost-effec-
tive and efficient approach to species assessments, 
eliminating the need for specialist validation or 
expensive molecular barcode techniques. The models 
aim to seamlessly integrate data from non-specialists, 
addressing current barriers in fish identification. In 
their methodology, the authors utilized a database of 
3068 photographs representing 33 fish genera from 
18 families and 4 orders, collected in Loreto, Peru, in 
2018 and 2019. Their study achieved an impressive 
genus-level identification accuracy of 97.9%. Notably, 
misidentifications were predominantly linked to small 
tetras (Characiformes: Characidae), key components 
of the Amazonian ichthyofauna (Oliveira et al. 2009; 
Van Der Sleen and Albert 2018).

The authors assert that their open-access  online 
application, the Fish Masker and Classifier (available 
at https:// amazo nian- fish- class ifier. strea mlit. app-per-
malink: https:// archi ve. ph/ OYq5a), serves as a valu-
able tool for non-specialists in achieving genus-level 
identification. The application allows users to upload 
pictures of live or preserved specimens under various 
conditions. According to the authors, the application 
recognizes fish pixels in the image, masks non-fish 
elements, and provides a taxonomic identification 
at the order, family, and genus levels based on their 
trained model. However, it is crucial to note that the 
performance of this machine-learning method for 
genus-level identification has not undergone further 
validation through additional tests.

The focus on real-world applicability and the 
potential implications of such an approach contribute 
to the ongoing discourse on the application of artifi-
cial intelligence in biodiversity research, emphasizing 
the crucial intersection of technological innovation 
and traditional taxonomic expertise in conservation 
decision-making (Campos et al. 2023). Therefore, this 
study aims to assess and validate the performance of 
the method proposed by Robillard et al. (2023) as an 

example of an innovative tool for fish identification. 
By employing a comprehensive approach, we aim to 
make a substantial contribution to the field, address-
ing the inherent challenges of fish identification, par-
ticularly concerning biodiversity management in trop-
ical ecosystems. We aim to provide novel insights and 
discuss critical aspects regarding the taxonomic accu-
racy of the model. This study is positioned to offer 
valuable perspectives to both scientists and practition-
ers engaged in environmental conservation, empha-
sizing the relevance of accurate fish identification in 
the context of megadiverse tropical ecosystems, such 
as the Amazon region.

Methods

Evaluating the training dataset for the ‘Amazonian 
Fish Masker and Classifier’

To assess the quality of the “Images used to train 
Amazonian fish classification model” (Dikow 2023) 
used in Robillard et al. (2023), we analyzed the origi-
nal masked images provided. We created a custom 
macro function using the ImageJ software (Schneider 
et  al. 2012) for precise pixel counting. The masked 
images were converted to 8-bit format, to standardize 
the pixel values to a range between 0 and 255, where 
0=black color. A threshold was applied, and any pixel 
with a value = zero was filtered, leaving only pixels 
with color information. Finally, we performed a parti-
cle analysis, counting the number of pixel aggregates 
in the images (code is available in Supplementary file 
S1). Following the pixel counting, ImageJ generated 
two distinct sheets as a result: one presenting values 
in a row for each particle – available in Supplemen-
tary file S2.1, and a second sheet with condensed val-
ues summarized by each analyzed picture (n = 3068 
images) - in Supplementary file S2.2.

Testing the ‘Fish Masker and Classifier’ tool

To test the model provided by Robillard et al. (2023), 
we used 100 photographs representing 21 genera, 
which were also included in their model training, 
with specimens from river basins under Amazonian 
influence (Guamá, Gurupi, Turiaçu, Mearim, Munim, 
Preguiças, and Parnaíba river basins), as well as from 
the Beni and Mamoré river drainages, in the Amazon 
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River basin. The photographed specimens and their 
corresponding vouchers are deposited in the following 
ichthyological collections: CICCAA (Coleção Icti-
ológica do Centro de Ciências Agrárias e Ambientais 
- Universidade Federal do Maranhão, Chapadinha, 
Brazil) and UMSS (Museo d’Orbigny - Universidad 
Mayor de San Simón, Cochabamba, Bolivia). The 
photographic database includes photographs taken 
under different conditions, such as color-in-life pic-
tures taken in a photo tank and outside a tank (e.g., 
specimen being held), pictures of preserved fish over 
a manually masked black background, and a white 
background (Table 1 in Supplementary file S3). Pho-
tographs of Bujurquina spp. from the Mamoré and 
Beni rivers were obtained from Careaga et al. (2023), 
with permission from the authors.

The images were submitted to the web application 
‘Fish Masker and Classifier’, a product developed by 
Robillard et  al. (2023) (Fish Masker and Classifier-
available at https:// amazo nian- fish- class ifier. strea 
mlit. app). After uploading, the application runs the 
masker model to determine the percentage of pixels 
classified as fish and to mask out the remaining pix-
els, rendered in black. Subsequently, we gathered this 
value (henceforth referred to as ‘fish_pixels’ in the 
text) and preserved both the masked image and the 
classifier model-generated prediction bar graph.

Since the graph lacks printed values for individual 
bars, we utilized the Plot Digitizer tool (accessible at 
https:// plotd igiti zer. com/ app) to digitize the charts. 
The scale was set from 0 to 100 probability, and 
points on the periphery of the bars in the graph were 
digitized.

The resulting graph presents four possible genera, 
each representing the probable genus of the photo-
graphed specimen, along with the corresponding 
probability of matching the classifier-based iden-
tification-in simpler terms, it provides a list of gen-
era that the picture is most likely to represent. These 
probabilities are organized in descending order, with 
the top-ranked option referred to as the ‘first option’ 
and denoted as ‘Class_1’ in our dataset, and so forth 
for the subsequent options. While the sum of the four 
probabilities may not necessarily equal 100 it will 
never exceed this value. Therefore, the probabilities 
of the four identifications are considered variables 
with some degree of interdependence.

The dataset with the results of the simulation con-
sisted of the labels of our pictures uploaded to the 

web application, taxonomic information of Order, 
Family, Genus, and the genus suggested as a result 
of the Classifier, including the respective probability 

Table 1  Results of the simulation with fish pictures in the 
Fish Masker and Classifier application

The genera in the first column are those suggested by the 
model for all options (‘Class_1’, ‘Class_2’, ‘Class_3’, and 
‘Class_4’). The percentage is calculated by counting against 
the total of genera (32). Accuracy is the percentage of correct 
classifications for each genus. Empty cells in the accuracy col-
umn are zeros

Genera sugges-
tion

Count of 
sugges-
tions

% Cumulative % Accuracy

Gymnotus 43 11,14 11,14 100%
Ancistrus 36 9,33 20,47 75%
Bunocephalus 28 7,25 27,72 –
Rineloricaria 27 6,99 34,72 –
Moenkhausia 24 6,22 40,93 40%
Otocinclus 23 5,96 46,89 –
Tetragonop‑

terus
17 4,40 51,30 –

Bryconops 16 4,15 55,44 14%
Prochilodus 16 4,15 59,59 40%
Hyphessobry‑

con
14 3,63 63,21 40%

Corydoras 13 3,37 66,58 –
Erythrinus 13 3,37 69,95 –
Tatia 13 3,37 73,32 –
Astyanax 10 2,59 75,91 –
Phenacogaster 10 2,59 78,50 –
Bujurquina 9 2,33 80,83 –
Doras 9 2,33 83,16 –
Pygocentrus 9 2,33 85,49 –
Characidium 8 2,07 87,56 38%
Copella 8 2,07 89,64 –
Hemigrammus 6 1,55 91,19 25%
Oxyropsis 5 1,30 92,49 –
Pimelodella 5 1,30 93,78 –
Sorubim 5 1,30 95,08 –
Bario 4 1,04 96,11 –
Pyrrhulina 4 1,04 97,15 –
Charax 3 0,78 97,93 –
Apistogramma 2 0,52 98,45 –
Curimata 2 0,52 98,96 –
Gasteropelecus 2 0,52 99,48 –
Knodus 1 0,26 99,74 –
Tyttocharax 1 0,26 100,00 –
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also the classification status, where we verified if the 
identification was correct and, in the case of error, 
three different categories (‘Order’, ‘Family’, and 
‘Genus’) were assigned to indicate at which taxonom-
ical level the error was identified (Supplementary file 
S4).

2.2.1 The black‑screen test

The amount of information available to the Classi-
fier model in the learning phase is expected to influ-
ence the outcome of the classification. Therefore, to 
evaluate the response of the Classifier under con-
trolled conditions, we performed the ‘black‑screen 
test’, which consisted of uploading the image of an 
all-black color (RGB = 0,0,0) rectangle to the web 
application and running the fish masker and classifier, 
collecting the outputs.

Data analysis

To determine whether the Classifier correctly iden-
tified the genus (that is, ‘Class_1_prob’), we used a 
beta regression, via the ‘betareg’ R package (Cribari-
Neto and Zeileis 2010), whereupon ‘Class_1_prob’ 
was the independent variable and ‘fish_pixels’ as the 
predictor variable. This allows us to assess how vari-
ations in pixel composition relate to the probability of 
correct genus identification. We created a concord-
ance matrix that compares the genus of the specimen 
depicted in each photo (previously identified by spe-
cialists) with the genus suggested by the Classifier 
as the primary possibility, referred to as ‘Class_1’. 
To evaluate the agreement in identifying fish gen-
era using the classification model from the Robillard 
et  al. (2023) web application, we calculated Fleiss’ 
Kappa (Fleiss 1971). The analysis was carried out in 
R, using version 0.84.1. of the ‘irr’ package (Gamer 
et al. 2019).

The datasets for the quality assessment of the 
training images (Supplementary file S2) and from 
the classification simulation (Supplementary file S4) 
were analyzed in Tableau Desktop Professional 2023 
.2 (under Freemium Student License), to calculate 
the descriptive statistics and generate the plots for 
the masked area (%) and distribution of classification 
error by Genus, Family, and Order.

Results

Quality of training dataset

The distribution of masked area percentage values 
in the input images of the training dataset displayed 
a large amount of variation concerning image qual-
ity (Dikow 2023). We believe that this discrepancy 
may have directly influenced the outcome in identi-
fications by their model. The overall average of the 
masked area for all pictures in the “Images used to 
train Amazonian fish classification model” dataset 
(Dikow 2023) was 93.99% (Fig. 1). For most genera 
(22 of 33), specific averages surpassed the overall 
average, which can be interpreted as a signal that the 
majority of the training was done with a relatively 
low amount of information (Fig. 1). In particular, Tyt‑
tocharax Fowler 1913, was the genus with the most 
masked area average, reaching 99.7% which means 
that almost the entire pictures for this genus in the 
training for the Classifier were composed of black 
pixels (non-fish).

Simulated identification

Using fish photographs from our dataset (n = 100) 
with representatives of 21 genera, we tested the 
accuracy of the Classifier. Considering all four sug-
gested genus identifications (‘Class_1’, ‘Class_2’, 
‘Class_3’, and ‘Class_4’), The assigned probability 
values are higher for the first option, but this pattern 
does not differ when we look at whether the model 
got the identification right or wrong. Thus, there was 
no difference in the deviations that would justify stat-
ing that the Classifier was more convinced in each of 
these situations (Table 2 in Supplementary file S3).

The Classifier suggested a total of 32 different gen-
era for our images. This is a 60% increase in estima-
tion, compared to the actual number of genera (n = 
21) presented in our database. When considering all 
the outputs given in the four possible genera sug-
gested by the Classifier, Gymnotus Linnaeus 1758, 
Ancistrus Kner 1854, Bunocephalus Kner 1855, 
Rineloricaria Bleeker 1862, Moenkhausia Eigen-
mann 1903, Otocinclus Cope 1871, and Tetragonop‑
terus Cuvier, 1816, were the most frequently men-
tioned, totaling 198 occurrences, which accumulated 
51,30% of all identifications in our sample (Table 1).
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For the ‘black screen test’ the classifier reported 
that 0.0% of the pixels were ‘fish’, as expected. How-
ever, the application still provided classifications, 
despite reporting that there was no fish in the image, 
assigning probabilities to several genera: Tyttocharax 
(39.36%), Characidium Reinhardt 1867 (13.74%), 
Otocinclus (9.10%), and Hemigrammus Gill 1858 
(7.28%).

To assess the correctness of the identifications by 
the Classifier, we only considered the genera sug-
gested in ‘Class_1’. The Classifier was able to cor-
rectly identify the fishes in our pictures at the genus 
level in only 18 of 100 photographs throughout our 

dataset (Supplementary file S4). For our sample of 
photos submitted to the Classifier, only eight out of 
21 genera were correctly identified. The highest accu-
racy was observed for the genera Gymnotus (100%, n 
= 4) and Ancistrus (75%, n = 3) (Table 1).

Taking into account only the incorrect identifi-
cations (n = 82), we categorized  the errors accord-
ing to their taxonomic rank (i.e.,  order, family, or 
genus), considering, for each case, the most abran-
gent rank. There was an inaccuracy of 65.85% (n = 
54) at the order level (Fig. 2a). In 19.51% (n = 16) 
of the cases, the order was correctly classified, but 
there was an error at family-level identification (Fig 

Fig. 1  Percentage of masked area values for 33 fish genera used as training dataset for the ‘Amazon fish masker and classifier’ model 
developed in Robillard et al. (2023). Genera names are sorted by average in ascending order. CI = Confidence interval 95%
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2.b). The model failed to correctly classify genera, 
even though it correctly determined the order and 
family of the photographed specimens in 14.63% (n 
= 12) of the cases (Fig. 2c).

The beta regression of the relation between the 
‘Class_1_prob’ variable using the ‘fish_pixels’ as 
predictor showed an estimated intercept is approxi-
mately 0.791, with a standard error of 0.161. The 
coefficient for ‘fish_pixels’ = − 0.1897 was not sta-
tistically significant (p = 0.897), and the pseudo-
r2= 1,517*10-4 indicates that the model has a very 
low power to explain much of the variance in the 
response variable ‘Class_1_prob’. Also, the cal-
culated Fleiss’ Kappa coefficient was 0.0126 (20 
subjects, 20 raters), indicating a very weak level 
of agreement among the raters. With an associated 
z-value of 1.03 and the corresponding p-value of 
0.304, the agreement was not significantly different 
from what would be expected by chance.

Discussion

Quality of training dataset

The quality of the images used to train the Classifier 
model in Robillard et  al. (2023) differs noticeably 
among the genera. The masker model, which extracts 
pixels related to the body area of the fish from the 
uploaded images, yields highly disparate results for 
the different genera of fish analyzed. This variation 
can be associated with factors such as the size of 
the fish in the photograph, light, and color intensity. 
In some cases, the model even completely removes 
most of the fish body, thus reducing the available 
‘fish_pixels’.

The amount of information used by the Classifier 
during the learning phase was little expressive in pro-
portion since it learned from pictures with an average 
of only 6,01% of ‘fish pixels’, and for some genera, 

Fig. 2  Percentage of masked area values for 21 fish genera 
used in simulation in this essay to test the ‘Amazon fish masker 
and classifier’ model developed in Robillard et al. (2023). Gen-

era names are sorted by average in ascending order. CI = Confi-
dence interval 95%
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this value was even lower, less than 5% (values in 
Table  3, Supplementary file S2.3). This potentially 
hindered the model’s ability to identify photographs 
of these genera with few pixels used to train the clas-
sification database.

Classifier limitations

Although Robillard et  al. (2023) recognized that 
applying the model to images from geographic areas 
outside the northwest Amazon has not yet been 
explored, their model was trained and validated with 
photos of live specimens with varying color patterns 
and pictures of preserved material from verified col-
lections. Thus, there was some degree of pheno-
typic variation incorporated into the development of 
machine learning from inception. Therefore, it would 
be expected that the Classifier would perform well for 
the same genera used to train the model, given that 
the training database was composed of genera widely 
distributed throughout the Amazon and adjacent 
basins (Van Der Sleen and Albert 2018).

During our tests, we found cases where the masker 
removed most of the fish body, leaving only part of 
structures such as the pectoral, pelvic, and caudal 
fins, as in the case of the suckermouth catfish genus 
Ancistrus, where most of the structures were removed 
(Table  1 in Supplementary file S3). We emphasize 
that although the model does not consider the pres-
ence/absence of the structures that are used to iden-
tify taxa in morphological studies, such as odontodes 
or fleshy tentacles, the model was still able to prop-
erly identify some genera. On the other hand, there 
were also instances where the masker left the fish 
nearly intact, but misidentifications occurred, as seen 
in the cases of Apistogramma Regan 1913, Astyanax 
Baird and Girard 1854, and Moenkhausia (Table 1 in 
Supplementary file S3).

Indeed, for greater certainty in the identification 
provided by the model, it is necessary to correctly 
identify the elements that most directly affect the 
performance of the Classifier. Our hypothesis that 
solely  the number of pixels classified as fish could 
be a good predictor of the probability assigned by the 
Classifier overall is unsupported. Instead,  the weak 
inverse relationship between the predictor variable 
‘fish_pixels’ and the response ‘Class_1_prob’ sug-
gests that the Classifier performs better with images 

that contain less information (i.e. less confusion for 
the model to deal with).

It would be expected that the application would 
reject the image when it does not depict a fish 
(0.0% fish pixels). However, the black screen test 
revealed that the application, even in the absence 
of pixels related to fish, still assigned a fish genus 
identification.

Accuracy

When considering misidentified individuals at the 
genus level, most of the errors concern specimens of 
the family Characidae, with the genus Moenkhausia 
being the most often suggested as the likely identi-
fication (Fig.  2c). The elevated number of mentions 
to Moenkhausia may be attributable to the nature of 
the model training, since the Classifier developed 
by Robillard et  al. (2023) was trained on a substan-
tial Moenkhausia dataset, encompassing 398 pho-
tos including various morphotypes, characterized by 
variations in morphological traits, such as scale size 
and color patterns, among others (“Images used to 
train Amazonian fish classification model” in Dikow 
(2023)). The morphological plasticity within the 
genus  Moenkhausia may have broadened the toler-
ance of the model for classifying this genus, thus 
affecting its predictive accuracy. Moreover, this genus 
presents a challenging and unsettled taxonomy (non-
monophyletic) due to species exhibiting a remark-
able  variable morphology. The calculated Fleiss’ 
Kappa concordance index reinforces the conclusion 
that the model’s predictive capacity did not surpass 
what could be anticipated by chance. These findings 
highlight the difficulties associated with achieving a 
high level of agreement in accurately identifying fish 
genera using the current state of the proposed clas-
sification model.

Our findings notably contrast with those of Robil-
lard et  al. (2023), as they reported only 12 misclas-
sifications out of 596 tested images, consisting of two 
at the order level and seven at the family level. The 
authors proposed enhancing accuracy by capturing 
a series of photos until a suitable masker outcome 
is achieved. However, the masker model frequently 
omits crucial structures for genera discrimination, 
especially within Characidae, where training dataset 
images often lack visible caudal, dorsal, pelvic, or 
anal fins (Table 1 in Supplementary file S3). Despite 
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this, our simulation and the inherent nature of the 
Classifier reveal its insensitivity to specific anatomi-
cal structures.

Robillard et al. (2023) noted that their model had 
prominent misidentifications particularly in tetras 
(Characidae), a key family in the Amazonian ichthyo-
fauna (Oliveira et al. 2009; Van Der Sleen and Albert 
2018). This highlights that their approach struggles 
with one of the most significant Amazonian fish 
groups. In contrast, errors at order and family levels 
are rare in traditional morphology-based ichthyofau-
nal inventories that may eventually lead to misidenti-
fications at species, subgenus, and genus levels, espe-
cially for small and medium-sized species like tetras 
(Characidae), catfishes (Siluriformes), and cyprino-
dontiforms as these groups often exhibit uncertain 
taxonomy or rely on diagnostic characters not observ-
able in field photographs or images of entire fixed 
specimens . Hence, the proposed model falls short 
of surpassing the efficiency of traditional taxonomy. 
Additionally, for optimal functionality, the model 
requires an extensive dataset encompassing varied 
positions, lighting, developmental stages, and colora-
tions, live or preserved, from the majority of species 
in a given region.

Recommendations

Contrary to the expectation that a higher quantity 
of information available in the pictures could lead 
to increased Classifier accuracy, the disagreement 
between the identifications by specialists and the 
classification provided was insufficient, and the beta 
regression results did not demonstrate a significant 
relationship between the variable ‘fish_pixels’ and the 
probability associated with the genus suggested by 
the Classifier. These findings write down the neces-
sity for further investigation and consideration of 
other variables that may influence the classification 
outcomes.

The current application lacks a criterion for reject-
ing images, assigning genus-level identifications 
regardless of whether the image depicts a fish. Imple-
menting a simple adjustment to address this limita-
tion is crucial for the effectiveness of approaches like 
the ‘Amazonian Fish Classifier’ for accurate fish iden-
tification. Caution is warranted when considering the 
use of Robillard et  al. (2023) and similar automated 
AI image identification applications, particularly 

given the limitations within the highly diverse South 
American region. The taxonomy of many freshwater 
fish groups in South America is still unsettled, espe-
cially in the Amazon, with numerous undescribed 
species and genera (Reis et  al. 2016; Birindelli and 
Sidlauskas 2018; Van Der Sleen and Albert 2018).

Molecular studies expose cryptic or undescribed 
species, taxonomic uncertainties, novel arrangements, 
and proposals for genera, highlighting the unresolved 
nature of freshwater fish taxonomy (e.g., Benzaquem 
et al. 2015; Melo et al. 2016a; Melo et al. 2016b; Car-
valho et al. 2018; Jacobina et al. 2018; García-Melo 
et al. 2019; Terán et al. 2020; Pires et al. 2021; Brito 
et  al. 2021; Aguiar et  al. 2022; Crispim-Rodrigues 
et  al. 2023; Říčan and Říčanová, 2023). The appli-
cation by Robillard et  al. (2023) is ill-equipped to 
handle such scenarios, potentially causing confusion 
within the scientific community and among stake-
holders due to its tendency to provide identifications 
for all images, including those of problematic or 
undescribed taxa.

It is important to emphasize that recent studies, in 
addition to the classic morphological examination of 
specimens, have increasingly incorporated molecu-
lar approaches in taxonomic descriptions—specifi-
cally,  in the context of Integrative Taxonomy. This 
approach aims to validate diagnostic characters or 
reinforce hypotheses related to the existence of new 
taxa, especially in groups where morphological dif-
ferences are not readily apparent or where diagnos-
tic structures are small or variable (e.g., Guimarães 
et al. 2018; Brito et al. 2019; Guimarães et al. 2019, 
2020; Santana et al. 2019; Mattox et al. 2020, 2023; 
Faria et al. 2021; Reia et al. 2021; Aguiar et al. 2022; 
Crispim-Rodrigues et al. 2023; Říčan and Říčanová, 
2023; Souza et al. 2023).

In these cases, molecular data and methods serve 
as crucial tools for identifying species and genera, 
especially when taxonomy is challenging, difficult, 
or involves cryptic species. The identification model 
proposed by Robillard et  al. (2023) may not accu-
rately classify in such instances. Therefore, despite 
the considerable cost, discouraging the use of molec-
ular tools for taxonomic identification is unwarranted.

As several fish genera possess diagnostic mor-
phological  characteristics, such as delicate struc-
tures, internal features, intricate color patterns, 
osteological structures, gonopodial structures, tooth 
morphology, and subtle color patterns, some cases 
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require additional molecular tools to resolve their 
taxonomy. The model by Robillard et  al. (2023), 
relying solely on pixel patterns, does not consider 
these characters, diminishing its effectiveness in 
taxa identification.

Conservation concerns

Our primary concern with this approach is focused 
on the assertion that any citizen can contribute 

information on species identification and distribution 
for conservation policies and measures through this 
application. The scientific community should exer-
cise caution regarding the potential misuse of such 
applications by non-scientists and stakeholders. For 
instance, it is reasonable to speculate that the photo-
graphs used to train identification models, as tested 
in this essay, were initially identified by specialists 
(taxonomists) in institutions A or B. Common sense 
suggests that the resulting identifications may be 

Fig. 3  Distribution of Identification Errors in the ‘Amazon 
Fish Masker and Classifier’ Model Developed in Robillard 
et  al. (2023). a: the model incorrectly classified at the Order 
level; b: The model correctly identified the order but made 

and error at the  Family and Genus  levels; c: the model only 
misclassified the Genus. Bars represent the probability values 
associated with the Genus suggested by the classifier. The n 
value corresponds to the occurrence count
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perceived as having the same accuracy and value as 
those provided by traditional taxonomy.

This can open a difficult precedent where the 
much-needed activity of taxonomists in the field and 
their identifications can be questioned because the 
taxa in such area were already identified by the use of 
an identification model that was fed by other research-
ers/taxonomists. Following that, wrong and ill-inten-
tioned decisions can become more common with dev-
astating impacts on biodiversity and conservation.

Due to the current inefficiency of the method, if 
broadly used without the aforementioned biases con-
sidered, it could lead to incorrect conservation deci-
sions and impact assessments. For environmental 
decisions, we should always seek the input of biolo-
gists, especially taxonomists in the field or laboratory, 
to properly support identifications from applications. 
Such an approach alone is not desirable, especially for 
freshwater fishes that are under severe pressure from 
stressors (Dudgeon et  al. 2006; Darwall et  al. 2018; 
Harrison et al. 2018; Reid et al. 2019; Tickner et al. 
2020; Albert et al. 2020; Ottoni et al. 2023).

At its current development stage, the tool would 
require several adjustments to the model parameters, 
so we recommend that its potential use should be 
limited to larger fish of commercial interest or when 
conservation implications are not directly affected by 
decisions based on the application identifications.

Conclusion

The application of automated models based on con-
volutional neural networks (CNN) or similar archi-
tectures for fish classification through photograph 
analysis holds promise. However, the success of 
these models is contingent upon overcoming vari-
ous constraints dictated by the intended final appli-
cation, and it is crucial to acknowledge their current 
limitations and the need for further refinement.

Upon evaluation in this study, the Robillard 
et  al.’s application displayed an unsatisfactory per-
formance, with low accuracy and an inability to sur-
pass the null hypothesis of random identifications. 
The low accuracy on identifications is not benefi-
cial and can bring more confusion to the scientific 
community, as well as conservation stakeholders. In 
addition, the potential misuse of such applications 
by non-scientists and stakeholders raises concerns 

about the reliability and validity of the data, par-
ticularly in comparison to traditional taxonomy 
conducted by specialists and identifications based 
on molecular libraries. The argument that auto-
mated classifications possess equal accuracy and 
value as those by taxonomists opens a Pandora’s 
box, challenging the credibility of taxonomic work 
and potentially paving the way for erroneous and 
ill-intentioned decisions with detrimental conse-
quences for biodiversity and conservation.

Transitioning to the broader implications, the inte-
gration of citizen-contributed information for conser-
vation policies is desirable, however, a note of caution 
is sounded when considering the adoption of methods 
reliant on Artificial Intelligence, particularly given 
the potential for misuse by non-scientists and stake-
holders. As we navigate the evolving landscape of 
technological advancements in biodiversity research, 
a balanced approach that integrates the strengths of 
both automated tools and expert taxonomic input is 
essential to ensure the accuracy and integrity of con-
servation decisions and impact assessments. Collabo-
ration between technological innovations and tradi-
tional expertise becomes paramount in addressing the 
challenges posed by the dynamic and complex field 
of biodiversity conservation.
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