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Abstract

A new species belonging to the Hoplias malabaricus complex from the Amazon basin,

Brazil, is described. The new species is characterized by 15–16 predorsal scales,

37–39 lateral-line scales, 5 scales from dorsal fin to lateral line, 38–39 vertebrae,

iii-iv, 7–8 anal-fin rays, ii-iv, 12–15 caudal-fin rays, last vertical series of scales on the

base of caudal-fin rays forming a straight line, 6–7 dark bands in anal fin and no dis-

tinctive dark bands or blotches on flanks. The new species is also distinguished from

other congeners of the H. malabaricus species-group by means of landmark-based

morphometrics and DNA Barcoding (Cytochrome c Oxidase I gene). An identification

key to species of the H. malabaricus species complex is provided.
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1 | INTRODUCTION

Freshwater environments harbour more than half the fish species in

the world (Fricke & Eschmeyer, 2021). In South America, the freshwa-

ter fish diversity accounts for more than 5000 formally described

species, but it is estimated that the actual diversity may achieve twice

that number (Reis et al., 2016). The Amazon, Orinoco and La Plata

river drainages are among the largest hydrographic basins of South

America and retain over 20% of the global freshwater fish diversity

(Reis et al., 2016). The Amazon basin alone is home to 2716 freshwa-

ter fish species (Dagosta & De Pinna, 2019), accounting for 13% of

the global diversity in this group of vertebrates (Fricke et al., 2021;

Reis et al., 2016). The majority of Amazonian fish groups belong to

the series Otophysi, with predominance of Characiformes and

Siluriformes Orders (Dagosta & De Pinna, 2019).

Although the Neotropical ichthyofauna has been investigated for

centuries, the diversity of species continues to increase rapidly, which

indicates that the current knowledge still underestimates the real

diversity (Nelson et al., 2016). The complexity of evolutionary rela-

tionships between groups of fishes can generate scenarios of
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taxonomic uncertainty, especially in taxa with wide distributions, such

as Pimelodus blochii (Ribeiro & de Lucena, 2006; Rocha, 2006),

Rhamdia quelen (Martinez et al., 2011; Ríos et al., 2017; Usso

et al., 2018), Synbranchus marmoratus (Kullander, 2003) and Hoplias

spp. (Cardoso et al., 2018; Oyakawa, 2003; Oyakawa &

Mattox, 2009).

The family Erythrinidae (Characiformes) includes 19 valid species

and three genera, Erythrinus Scopoli 1777, Hoplerythrinus Gill 1896

and Hoplias Gill 1903 (Fricke et al., 2021; Oyakawa, 2003). Three spe-

cies groups within Hoplias can be recognized based on morphology:

H. lacerdae, H. malabaricus and the monotypic H. aimara

(Oyakawa, 1990; Oyakawa & Mattox, 2009). The species Hoplias

microcephalus (Agassiz 1829) and Hoplias patana (Valenciennes 1847)

are not associated with these morphological groups.

H. malabaricus (Bloch, 1794), distinguished from congeners by a

characteristic rough tongue and V-shaped margins of medial contralat-

eral dentaries converging towards the symphysis in the ventral view

of head (Oyakawa, 1990; Oyakawa & Mattox, 2009), was revealed to

hide a species complex that was firstly evidenced by karyotypic varia-

tion (Bertollo et al., 2000; Blanco et al., 2009; Santos et al., 2016).

Molecular data appended evidence supporting the H. malabaricus

complex (Dergam et al., 1998; Jacobina et al., 2018; Marques

et al., 2013; Pereira et al., 2013; Rosso et al., 2012). Currently, the

H. malabaricus group comprises six valid species: H. malabaricus,

Hoplias microlepis (Günther, 1864), Hoplias teres (Valenciennes, 1847),

Hoplias mbigua (Azpelicueta et al., 2015), Hoplias misionera (Rosso

et al., 2016) and Hoplias argentinensis Rosso et al., 2018).

Although the H. malabaricus species complex has long been rec-

ognized from cytogenetic and molecular evidence, new species of this

complex have been formally described only recently: H. mbigua

(Azpelicueta et al., 2015), H. misionera (Rosso et al., 2016) and

H. argentinensis (Rosso et al., 2018). Species of the H. malabaricus

complex inhabit most of the freshwater ecosystems present in South

America (Dagosta & De Pinna, 2019; Oyakawa, 2003). Nevertheless,

the advance of taxonomic knowledge on this group is confined to the

La Plata River basin, with the description of the above-mentioned spe-

cies. This leaves a large portion of South America, where species of

the H. malabaricus complex are common and abundant, with a strong

uncertainty in taxonomic resolution.

The adoption of molecular tools, such as DNA barcoding, allied

with traditional morphology and other markers provides increased

power to investigate taxonomic boundaries among species, in a

way that is commonly referred to as ‘integrative taxonomy’
(Dayrat, 2005). It has proven to be effective for clarifying cryptic spe-

cies hidden in species complex and is becoming usual in taxonomic

fish studies (e.g., Faria et al., 2021; Guimar~aes et al., 2019; Melo

et al., 2016; Rosso et al., 2016, 2018). Through DNA barcoding, at

least 15 new candidate species are expected in the H. malabaricus

complex (Cardoso et al., 2018).

In this study, we describe a new cryptic species belonging to the

Hoplias malabaricus species complex from the Crepori River drainage,

in the middle Tapaj�os River basin. The new species is recognized by

means of an integrative taxonomic approach, combining genetic,

morphometric and morphological traits, coupled to an extensive revi-

sion of all the type material available for the H. malabaricus species

complex.

2 | MATERIALS AND METHODS

2.1 | Ethics statement and specimen preservation

Collections of samples were authorized by the Instituto Chico Mendes

de Conservaç~ao da Biodiversidade (ICMBio) (Permit no. 32,653–3).

The fish were anesthetized and euthanized by immersion in clove oil

solution until the full stop of opercular movement in accordance with

the guidelines of the Animal Use Ethics Committee (CEUA) of the

Universidade Federal do Oeste do Pará (CEUA/UFOPA

#09003/2016).

Voucher specimens (n = 17) were fixed in 10% formalin for 72 h,

rinsed with tap water and preserved in 70% ethanol. The specimens

were stored at the Fish Collection of the Instituto de Ciências e

Tecnologia das �Aguas of the Universidade Federal do Oeste do Pará

(UFOPA) and the Instituto de Investigaciones Marinas y Costeras

(IIMyC-UNMDP-CONICET).

2.2 | Morphological analysis

Traditional measurements and counts were made on the left side of

the body following Fink and Weitzman (1974) in strict sensu with fur-

ther modifications incorporated by Mattox et al. (2006) and Rosso

et al. (2018). A total of 35 counts (14 for pores, seven for scales, five

for teeth and fin-rays, three for gill rakers and one for bands in the

anal fin) were obtained by either visual or microscope inspection. Lin-

ear body measurements (standard length and 22 additional measure-

ments; see Table 1) were taken with a digital calliper to the nearest

0.01 mm. Vertebrae counts, including the anterior four vertebrae of

the Weberian apparatus, were performed on radiographed specimens.

Counts of the holotype are denoted by an asterisk.

Examined material are deposited in the following institutions:

BMNH: Natural History Museum, London, U.K.; CFA-IC: Fundaci�on

de Hist�oria Natural Félix de Azara, Universidad Maim�onides,

Buenos Aires, Argentina; CI-FML: Fundaci�on Miguel Lillo, San

Miguel de Tucumán, Argentina; INPA: Instituto Nacional de

Pesquisas da Amazônia, Manaus, Amazonas, Brazil; LBP:

Laborat�orio de Biologia e Genética de Peixes, Departamento de

Morfologia, Instituto de Biociências, Universidade Estadual Paulista

‘Júlio de Mesquita Filho’, Campus de Botucatu, S~ao Paulo, Brazil;

LGEP: Laboratorio de Genética Evolutiva-Peces, Posadas,

Argentina; MHNN: Museum d'Histoire Naturelle de Neuchâtel,

Neuchâtel, Switzerland; MLP: Museo de La Plata, Instituto de Lim-

nologia, La Plata, Argentina; MNHN: Muséum National d'Histoire

Naturelle, Systématique et �Evolution, Laboratoire d'Ichthyologie

Générale et Appliquée, Paris, France; UFOPA: Universidade Federal

do Oeste do Pará, Coleç~ao Ictiol�ogica, Instituto de Ciências e
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Tecnologia das �Aguas, Santarém, Brazil; UNMDP: Instituto de

Investigaciones Marinas y Costeras, Universidad Nacional de Mar

del Plata, Argentina; ZMB: Museumfür Naturkunde, Leibniz-

Institutfür Evolutionsund Biodiversitätsforschung, Berlin, Germany.

Institutional abbreviations follow Fricke and Eschmeyer (2021).

2.3 | Morphometric analysis

To characterize body shape variation among different species within

the H. malabaricus complex, a geometric morphometric approach

based on interlandmarks distances (Ild) was conducted according to

González-Castro et al. (2016) and González-Castro and

Ghasemzadeh (2016). Twenty-three morphometric variables were

taken as Ild over the left side of the specimens, employing a digital cal-

liper (0.05 mm precision). These variables were based on 11 anatomi-

cal landmarks obtained by a truss network following the protocol

designed in Rosso et al. (2018) (Figure 1). Additional comparative mor-

phometric data of the recently described species H. mbigua (n = 8),

H. misionera (n = 21) and H. argentinensis (n = 19), obtained from

Rosso et al. (2018), were included to compare and characterize the

new species under description. Six new specimens [CFA-IC 45600,

CFA-IC 10451 (2), CFA-IC 34, CFA-IC 3083, CFA-IC 1783] of

H. mbigua (a total of n = 14) were measured for this study.

The morphometric characters were organized according to the

H. malabaricus species group. A normalization technique to scale the

data that exhibit an allometric growth was used according to Lleonart

et al. (2000). The standard length (SL) was employed as the indepen-

dent variable and the remaining Ild were considered as dependent

TABLE 1 Morphometric data of
Hoplias auri, new species

H. auri (n = 18) Holotype Mean Min. Max. S.D.

S. no. Standard length 229 181.23 30.82 272 63.93

1 Body depth 20.26 20.0 16.23 22.96 1.61

2 Head length 30.35 31.0 28.43 34.1 1.34

3 Pectoral-fin length 17.69 16.85 15.85 19.01 0.84

4 Pelvic-fin length 19.65 18.96 17.94 20.52 0.82

5 Anal-fin length 17.77 18.13 16.55 20.26 1.02

6 Dorsal-fin length 35.2 31.39 28.01 35.2 1.90

7 Dorsal-fin base 18.73 17.45 15.07 19.49 1.11

8 Anal-fin base 9.08 8.45 7.59 9.48 0.56

9 Pre-pectoral length 29.3 30.28 27.92 32.89 1.10

10 Pre-pelvic length 53.71 55.49 53.14 58.82 1.52

11 Pre-dorsal length 47.12 46.95 43.03 52.19 2.6

12 Pre-anal length 79.83 79.94 75.15 82.11 2.11

13 Caudal peduncle depth 12.79 13.10 11.55 14.3 0.78

14 Caudal peduncle length 13.76 13.45 11.56 14.97 0.90

15 Head depth 51.37 49.53 47.81 51.57 1.30

16 Snout length 27.19 25.32 23.38 27.31 1.22

17 Snout width 24.6 23.07 21.43 24.94 1.13

18 Snout depth 22.88 19.74 17.38 22.88 1.69

19 Pre-nasal length 16.26 15.12 12.94 17.79 1.18

20 Orbital diameter 16.83 17.28 13.94 20.84 1.94

21 Interorbital width 28.49 26.58 23.88 30.28 2.22

22 Upper jaw length 54.39 52.20 48.33 54.64 1.73

Note: Standard length in mm; values 1–14 as percentage of standard length; values 15–22 as percentage

of head length. Range includes the holotype.

Abbreviations: n, number of specimens; S.D., standard deviation.

F IGURE 1 Box truss showing interlandmark distances based on
11 homologous anatomical landmarks collected in the specimens of
the four different species of Hoplias analysed. Box truss numbers in
Roman numerals
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variables. For this work, SL0 represents a reference value (170 mm) to

which all individuals were reduced (or amplified). This transformation

scales the data that exhibit allometric growth (Lleonart et al., 2000).

After transformation, a new matrix was constructed containing the

corrected matrices for each species, and a principal component analy-

sis (PCA) was performed using MULTIVARIADO software (Salom�on

et al., 2004). The principal components scores (PCs) obtained were

submitted to cross-validated discriminant analysis (DA) using SPSS

v.13.0 to build a predictive model of group membership based on the

observed characteristics of each case.

2.4 | Molecular data

Prior to preservation of specimens, we collected tissue samples from

epaxial muscle in most specimens (n = 15) comprising the type mate-

rial (see Table S1 for details) that were preserved in absolute ethanol

and frozen at �20�C until the molecular analysis. Genetic analyses

were conducted using the Cytochrome c oxidase subunit I (COI) gene

as a molecular marker. Genomic DNA was extracted from the holo-

type and 14 paratypes using the salting-out protocol (Aljanabi &

Martinez, 1997) adapted by Vitorino et al. (2015). The fragment of

COI was amplified by polymerase chain reaction (PCR) using FishF1

and FishR1 primers (Ward et al., 2005). The reactions were performed

according to Guimar~aes et al. (2018). The DNA barcoding sequences

were obtained through the capillary sequencing by di-desoxiterminal

reaction (Sanger method) using a ABI PRISM BigDye Terminator

V.3 Cycle Sequencing kit and the genetic analyser ABI3500 (Applied

Biosystems, Nijmegen, The Netherlands).

The sequences were aligned using the ClustalW Algorithm

(Thompson et al., 1994) implemented in the software Bioedit

(Hall, 1999). All sequences and specimen metadata were assembled to

Barcode of Life Database Systems (BOLD, http://www.boldsystems.

org) (Ratnasingham & Hebert, 2007), linked to the Project ‘Amazonian

Trahiras’ (AMTRA). To enrich the molecular database with compara-

tive material, we downloaded from BOLD supplementary sequences

of the following taxa: H. argentinensis (n = 15), H. malabaricus (n = 20),

H. mbigua (n = 15), H. microlepis (n = 7), H. misionera (n = 15) and

H. lacerdae (n = 2) (S1).

2.5 | Molecular species delimitation

To identify the species based on DNA barcoding sequences we

applied four species delimitation approaches: (a) Barcode Index Num-

ber (BIN) (Ratnasingham & Hebert, 2013); (b) Automatic Barcode Gap

Discovery (ABGD) (Puillandre et al., 2012); (c) Assemble Species by

Automatic Partitioning (ASAP) (Puillandre et al., 2021); and

(d) Generalized Mixed Yule Coalescent (GMYC) (Fujisawa &

Barraclough, 2013; Pons et al., 2006).

The BIN is an online tool implemented in the BOLD System work-

bench (www.boldsystems.org) that uses the algorithm RESL (Refined

Single Linkage Analysis) to find clusters of DNA barcodes from entry

data and the BOLD archived library (Ratnasingham & Hebert, 2013).

This procedure assigns a tag (BIN identification) for the clusters recov-

ered and assumed as an Operational Taxonomic Unit (OTU) that can

be considered putative species based on a maximum intra-cluster dis-

tance threshold. The maximum intra-cluster distance is prefixed to

2.2%, if a new sequence diverges from any existing cluster in more

than twice the threshold (>4.4%) it is assigned as the founder of a

new cluster (Ratnasingham & Hebert, 2013).

We used the ABGD method to explore the existence of disconti-

nuities within the pairwise distance distributions plots (barcoding gap)

as evidence of the species boundary (Puillandre et al., 2012). This

analysis was implemented with the ABGD online platform (bioinfo.

mnhn.fr/abi/public/abgd/abgdweb.html), starting with a distance

matrix generated with MEGA X (Kumar et al., 2018) and setting

parameters for the K80 model, intraspecific divergence min. 0.001,

max. 0.1 and barcoding gap as default (X = 1.5).

The ASAP method is used to build species partitions from single-

locus sequence alignments and forms a hierarchical clustering by

merging sequences into ‘groups’ that are successively further merged

until all sequences form a single group. The probability and barcode

gap width are combined into a single asap-score that is used to rank

the partitions (Puillandre et al., 2021). For this method we used the

web-interface https://bioinfo.mnhn.fr/abi/public/asap.

For the GMYC method we removed the repeated haplotypes

and constructed an ultrametric tree processed in BEAST v1.8.0

(Drummond & Rambaut, 2007) based on the HKY evolution model,

gamma distribution (G) + proportion of invariable sites (I) chosen

with jModelTest (Posada, 2008), molecular clock lognormal relaxed

and Yule process speciation, with 100 million MCMC iterations and

sampled at each 1000 iterations with 10% burn-in. The convergence

and stability were checked with the software Tracer v.1.7.1 and

retained for effective sample sizes (ESS) > 200 (Drummond &

Rambaut, 2007). The resulting trees were combined with

TreeAnotator v1.8.0 and saved as a Newick file (Drummond &

Rambaut, 2007). To test the branching events for speciation and

coalescence null hypothesis we used the packages Splits (Species

Limits by Threshold Statistics) (Ezard et al., 2017) and Ape (Analyses

of Phylogenetics and Evolution) (Paradis & Schliep, 2018), with the

single threshold model implemented in R 3.4.0 statistical software

(R Core Team, 2014).

As additional evidence for species delimitation, genetic diver-

gences among species were estimated. A neighbour-joining (NJ) tree

of Kimura two-parameter (K2P) distances (Kimura, 1980) was created

using the software MEGA X (Kumar et al., 2018), configured using

FigTree v.1.2.2 (http://tree.bio.ed.ac.uk/software/figtree/).

3 | RESULTS

3.1 | Hoplias auri, new species

385F9898-0094-4C04-99A7-A80379DD4CBB

(Figure 2, Table 1)
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Hoplias malabaricus (non Bloch 1794). Silva (2017);

Guimar~aes (2020): 44–45, 51 (Brazil, Pará, Crepori River; supported

by distinct molecular methods as a putative new undescribed species

in the H. malabaricus complex).

3.1.1 | Holotype

UFOPA - I 1353, 229 mm SL, Brazil, Pará State, Tapaj�os basin: Crepori

River, Itaituba region, Creporiz~ao District: Lago do Sr. Pena,

6�5001.3000S, 56�50050.9000W, L. Rodrigues, J. Santos, C. Silva,

M. Brito, 21 July 2016.

3.1.2 | Paratypes

All from Brazil, Pará State, Tapaj�os basin: Crepori River, Itaituba

region, Creporiz~ao Village: Lago do Sr. Pena, 6�5001.3000S,

56�50050.9000W, UFOPA - I 1353, 3, 159–202 mm SL, L. Rodrigues,

J. Santos, C. Silva, M. Brito, 20–21 July 2016, UNMDP 5206,

1, 163 mm SL, L. Rodrigues, J. Santos, C. Silva, M. Brito, 20 July 2016,

Lago Creporiz~ao, 6�49011.5600S, 56�5104.5200W, L. Rodrigues,

J. Santos, C. Silva, M. Brito, 21 July 2016, UFOPA - I 1355,

2, 153–154 mm SL, Igarapé da Sra. Maria Brito, 6�49012.5000S,

56�50052.8000W, L. Rodrigues, J. Santos, C. Silva, M. Brito, 20 July

2016: UFOPA - I 1354, 8, 138–321 mm SL, UNMDP 5204,

1, 245 mm SL, UNMDP 5205, 1, 194 mm SL, Igarapé Creporiz~ao,

6�4900900S, 56�5103100W, C. Duarte, 30 April 2008: INPA 32732,

2, 30.82–44.28 mm SL.

3.1.3 | Allocation to species group

H. auri belongs to the H. malabaricus species-group based on

(a) morphological characteristics such as medial margins of dentaries

converging in a V or Y shape towards the mandibular symphysis,

the presence of tooth plates on the basihial and basibranchial bones,

four pores along the dentary latero-sensory system, the presence of

the accessory ectopterygoid bone and the absence of an oval dark

spot in the opercular membrane, and (b) closest molecular

phylogenetic affinity with H. malabaricus species-group (3.0%–8.3%

interspecific distances).

3.1.4 | Diagnosis

H. auri is distinguished from other species of the H. malabaricus

group by the following combination of characters: 15–16 predorsal

scales, 37–39 lateral-line scales, 5 scales from dorsal fin to lateral

line, 38–39 vertebrae, iii-iv unbranched anal-fin rays, 12–15

branched caudal-fin rays, last vertical series of scales on the base of

caudal-fin rays forming a straight line and 6–7 dark bands in

anal fin.

The number of predorsal scales (15–16) distinguishes H. auri

from H. argentinensis (17–19), H. microlepis (17–19) and H. teres

(18 in one paratype). The number of lateral-line scales (37–39) and

vertebrae (38–39) distinguishes H. auri from H. argentinensis (41–44

and 42–43, respectively), H. teres (40–41 and 42, respectively),

H. microlepis (43–46 and 42–43, respectively) and H. mbigua (41–44

and 42, respectively). H. auri differs from H. misionera in the last

vertical series of scales on the base of caudal-fin rays forming a

straight line (vs. a curved line) and body depth (16.23–22.95, mean

20 vs. 20.6–26.47, mean 23.74). Body depth also helps to discrimi-

nate H. auri from H. argentinensis (21.7–25.59, mean 23.34). Hoplias

auri differs from H. mbigua by dorsal profile of head straight or

slightly convex (vs. concave), pre-pectoral (27.91–32.89, mean 30.28

vs. 25.8–28.9, mean 27.4) and pre-pelvic (53.14–58.81, mean 55.49

vs. 46.3–54.7, mean 51.7) lengths. A longer (snout length 23.38–

27.31 vs. 21.95–23.07) and narrow (snout width 21.43–24.94 vs.

29.45–29.49) snout discriminates H. auri from H. teres. H. auri is

most similar to H. malabaricus, differing by snout width (21.43–

24.94, mean 23.07 vs. 24.51–31.03, mean 27.95), number of verte-

brae (38–39 vs. 39–41), unbranched anal (iii-iv vs. ii) and branched

(Figure 3) caudal (12–15 vs. 14–15) fin-ray counts. H. auri can also

be characterized by colour patterns. The conspicuous dark longitudi-

nal band commonly observed in H. mbigua and H. microlepis is lac-

king (Figure 4). Bands in anal fin discriminate from H. mbigua (4–5),

H. misionera (3–5), H. microlepis (5–6) and H. auri (6, n = 6 or

7, n = 10) (Figure 5a–d).

3.1.5 | Description

Morphometric data are summarized in Table 1. Body cylindrical. Dor-

sal profile of head straight or slightly convex. Anterior profile of head

angular to slightly rounded in lateral view. Greatest body depth at

dorsal-fin origin. Medial margins of contralateral dentaries converging

to midline forming a V or Y-shaped angle. Lower and upper lips fleshy.

Anterior nostril with incomplete tubular skin flap covering to entire

opening. Posterior nostril without fleshy flap and equidistant to ante-

rior nostril and anterior bony margin of orbit. Infraorbitals 3 and

4 completely excluded from orbital ring or infraorbital 4 tip reaching

the orbit (n = 4; 154, 159, 163 and 212 mm SL). Teeth caniniform in

F IGURE 2 Hoplias auri, UFOPA-I 1353, holotype, 229 mm SL;
Brazil: Pará State, Tapaj�os basin, Crepori River. Scale bar = 1 cm
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both jaws. Single premaxillary tooth row with 8 (2), 9* (10) or

10 (4) teeth. First two medial teeth large, followed by three to four

smaller teeth, and other two large canines. First and last canines in

this series are the largest. One or two small teeth posterior to the last

largest canine and almost in contact with the small first maxillary

tooth. Maxillary row with four to six first teeth increasing progres-

sively in size followed by 35–44 small teeth. Dentary external series

with one symphyseal tooth followed by two or three smaller teeth

and another tooth as large as symphyseal tooth followed by the larg-

est dentary canine. Posteriorly, a series of four to six small teeth

followed by five to 10 teeth arranged in a repetitive series of one

large and one or two small conic teeth. Internal series of dentary with

15 very small conical teeth immediately posterior or slightly anterior

to the last conical tooth of the external row. Accessory ectopterygoid

not fragmented, bearing 10 (2) or 11 (5) conical teeth along its ventro-

lateral margin.

Dorsal-fin origin placed at midbody two to three scales anterior

to vertical through pelvic fin origin. Dorsal-fin rays ii-11 (1), ii-12 (4) or

iii-11* (11). Tip of longest ray of depressed dorsal fin extending at or

slightly beyond vertical through anus. Anal-fin rays iii-7* (3), iii-8 (8) or

iv-7 (5). Pectoral-fin rays i-12* (9) or i, 13 (7). Pelvic-fin rays i-7* (16).

Total caudal-fin rays 16 [ii-12-ii (2); i-13-ii (1); i-14-i (1)] or 17 [ii-13-ii

(1); ii-14-i* (5); i-15-i (5)]. The tip of pectoral fin separated from pelvic-

fin origin by four to six scales. Tip of pelvic fin separated from vertical

through anus by two to five scales. Predorsal scales 15 (9) or 16* (7) in

irregular series.

F IGURE 3 Caudal rays for
Hoplias auri: UNMDP 5205,
194 mm SL (a), UFOPA-I 1353,
159 mm SL (b) and UFOPA-I
1353, holotype, 229 mm SL (c).
Illustrations by Tauanny Lima.
Photographs by Juan J. Rosso
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Lateral line with 37* (5), 38 (7) or 39 (4) perforated scales, with

1 (1) or 2* (15) unperforated scales beneath the opercle membrane.

Longitudinal series of scales between dorsal-fin origin and lateral line

5; longitudinal series of scales between lateral line and pelvic-fin

origin 4*-5. Longitudinal series of scales around caudal peduncle 20.

First epibranchial with 9*-11 gill rakers. The first one in this series is

somewhat elongated. One elongated angular raker. Ceratobranchial

with five elongated and 10 plate-like denticulate rakers. Latero-

sensory canal along ventral surface of dentary with four (three speci-

mens with five pores on one dentary) pores. Latero-sensory canal with

six pores in preopercle. Latero-sensory canal along infraorbitals

(Figure 6) with 10 (4), 11 (7), 12* (3) or 13 (2) pores. Infraorbital 1: 2–4

pores, infraorbital 2: 2–3 pores, infraorbital 3: 1–2 pores, infraorbital

4: 1 pore, infraorbital 5 lacking pores and infraorbital 6 with 2–4

pores. Latero-sensory system of dorsal surface of head (Figure 7) with

10–11* pores. Nasal bone: 2 pores, frontal bone: 4 pores, pterotic

bone: 1–2* pores. One pore between parietal bones, on the posterior

end of suture. The following combination of pores (Figure 8) in

supraopercle: extra-escapular bones: 0–2* (13) or 1–1 (3). Total verte-

brae 38–39*.

3.1.6 | Colour in alcohol

Background coloration brown and light brown, darker at dorsum. Ven-

tral surface white or pale-yellowish. Scales on dorsal half of body with

scattered dark-brown melanophores. Scales on ventral half of body

with a dark vertical blotch on their left margins, sometimes expanding

and covering the half surface of scales; more noticeably in paler indi-

viduals. Lateral chevron-shaped blotches, common in the

H. malabaricus species group, inconspicuous, hardly visible in some

specimens. Some specimens with heads completely marbled, others

with marbled snouts. Four dark stripes radiating posteriorly from eye

along infraorbital 2, 3, 6 and between infraorbitals 4 and 5. The latter

is the shortest. A wide dark posterodorsally blotch along the joint

F IGURE 4 Colour patterns in species of the Hoplias malabaricus
species-group. (a) Hoplias auri, UFOPA - I 1353, holotype, 229 mm SL,
(b) Hoplias misionera, UNMDP 3865, 187 mm SL, (c) Hoplias
argentinensis, UNMDP 3867, 177 mm SL, and (d) Hoplias mbigua,
UNMDP 4966, 282 mm SL. Scale bars = 1 cm

F IGURE 5 Bands in anal fin from
Hoplias mbigua CI-FML 6763
holotype, 223 mm SL (a), Hoplias
misionera UNMDP 3672, 199 mm SL
(b), Hoplias microlepis BMNH
1864.1.26.309 paralectotype,
176 mm SL (c) and Hoplias auri
UNMDP 5204, 245 mm SL (d). Scale
bars = 1 cm
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between opercle and subopercle bones. In those specimens where

chevron lateral blotches are more discernible (less than 200 mm SL),

dark elliptical or slightly rounded spot on dorsal part of caudal pedun-

cle fusing with the dorsal anteroventrally branch of the last chevron

lateral blotch. Latero-ventral surface of dentaries with transverse

brown bands or blotches. These bands are sometimes visible on max-

illa and lips. All fins light cream to light brown, with dark spots on rays

and interradial membranes. Spots in anal fin larger, forming six or

seven dark bands.

3.1.7 | Etymology

The specific epithet ‘auri’ is used as a noun, comes from the Latin

(auri = gold) and refers to the locality, which is in an area for gold min-

eral extraction.

3.1.8 | Distribution and habitat

H. auri has a restricted distribution in the Crepori River and tributaries

(Figure 9). The Crepori River is a medium-sized tributary of the

Tapaj�os River in the Amazon Basin with a drainage area of roughly

50.000 km2 and a mean discharge of 700 m3 s�1 (Telmer et al., 2006).

Its headwater is located in the central portion of the Tapaj�os basin, on

the border between the municipalities of Itaituba and Jacareacanga,

and flows northward to meet the Marupá River, where the Creporiz~ao

village is located, and continues until it meets the Tapaj�os River,

roughly 250 km south of Itaituba Municipality. The main channel and

tributaries of the Crepori River present muddy waters due to the

intensive gold mining on their banks. In particular, H. auri was col-

lected in three sites at the Creporiz~ao village. Site 1, Lago do Sr. Pena

(Figure 10a), is an artificial lake resulting from a stream impoundment,

situated beside a landing strip, where the marginal vegetation was

suppressed and a narrow strip of riparian vegetation has been pre-

served along the course of the stream. This lake has clear waters and

is used for recreation and possibly fish farming. During the fieldwork

in this site, we recorded small catfish (Pimelodella sp.), jejú

(Hoplerythrinus unitaeniatus), piau (Leporinus sp.), acará (Aequidens sp.)

and the exotic species tilapia (Oreochromis niloticus). Site 2, Igarapé da

Sra. Maria Brito (Figure 10b), is a severely disturbed water body that

flows into the centre of the village. This area is characterized by a strip

of flooded lowland covered by shrub vegetation and aquatic macro-

phytes. Water is turbid due to suspended particles that are loaded

from the surroundings. Such surroundings function as residence

dumping areas, so loads of residuals and contaminants may be carried

F IGURE 6 Schematic figure depicting latero-sensory canal along infraorbitals of Hoplias auri (UFOPA-I 1355 154 mm SL) infraorbital 1 (a),
infraorbitals 2–4 (b) and infraorbitals 5–6 (c). Arrows point to the location of pores in the corresponding infraorbital bones. Illustration by Tauanny
Lima. Photograph by: Juan J. Rosso
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to the water body. In this site we observed many tiny fish of the fam-

ily Characidae (piabas). Site 3, Lago Creporiz~ao (Figure 10c), is a mar-

ginal lagoon with a round shape that resulted from an abandoned

digging. It has sporadic connection with the river main channel during

the high water periods. The water is turbid and grasses, aquatic plants

and small trees are present in the riparian vegetation. All the sampling

F IGURE 7 Latero-sensory system of dorsal surface of head of Hoplias auri (UFOPA-I 1353, 159 mm SL): nasal bone (a), frontal bone (b),
pterotic, extra-escapular and supraopercle bones (c), parietal bone (d). Arrows point to the location of pores in the corresponding bones.
Illustration by Tauanny Lima. Photographs by Juan J. Rosso

F IGURE 8 Combination of
pores in pterotic, supraopercle
and extra-escapular bones of
Hoplias auri: UNMDP 5205,
194 mm SL, pterotic 1: extra-
escapular 2: supraopercle 0 (a),
UFOPA - I 1355, 153 mm SL,
pterotic 2: extra-escapular 2:
supraopercle 0 (b) and UFOPA - I
1354, 212 mm SL, pterotic 2:
extra-escapular 1: supraopercle
1 (c). Arrows point to the location
of pores in the corresponding
bones. Illustrations by Tauanny
Lima. Photographs by Juan
J. Rosso
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sites present reduced riparian vegetation, with slow-flowing waters

and substrates composed of alluvial, sandy and clayey sediments.

3.1.9 | Conservation issues

The aquatic environments in the type locality and surroundings in the

Crepori River have been disturbed by gold mining, logging and cattle

breeding. Consequently, the Crepori River was altered due to silting,

channel deviation and water contamination, which in turn can lead to

harmful effects on fish assemblage. The Tapaj�os River basin has a long

history of aquatic contamination by mercury, linked to artisanal gold

extraction, and the mercury bioaccumulation in its fish species is well-

documented (see Akagi et al., 1995; Castilhos et al., 2015; Nevado

et al., 2010; Sampaio da Silva et al., 2013). A preliminary assessment

of mercury exposure showed that H. auri had levels of mercury up to

the legal limits stated by the World Health Organization (WHO) and

that was much higher than levels observed in H. malabaricus from

Santarém, at lower Tapaj�os River (Silva, 2017). Additionally, significant

increase of DNA lesions observed in H. auri is likely caused by mer-

cury contamination (Silva, 2017). Contamination of freshwater eco-

systems by heavy metals is widely known to cause biological damage

F IGURE 9 Map of Tapaj�os River basin and adjoining areas, showing the Crepori River basin, type locality and collection sites of Hoplias auri
(orange circles indicate paratypes localities; star indicates type locality)

F IGURE 10 Collecting sites at Creporiz~ao Village: Lago do Sr. Pena (a), Igarapé da Sra. Maria Brito (b), Lago Creporiz~ao (c)

434 GUIMARÃES ET AL.FISH
 10958649, 2022, 2, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1111/jfb.14953 by U
niversidade Federal D

o O
este, W

iley O
nline L

ibrary on [16/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



to fish (Mela et al., 2007; Porto et al., 2005; Vicari et al., 2012). H. auri

inhabits waters classified as unsuitable for ichthyofauna

(ICMBio, 2009) due to a high level of anthropic pressure and environ-

mental degradation. H. auri is only known from four locations in the

Crepori River, with an Extent of Occurrence (EOO) of 0.882 km2 and

Area of Occupancy (AOO) of 8.000 km2. Considering the small

EOO/AOO and the increase in threats that may put H. auri

populations at risk, we recommend considering this new species as

Critically Endarngered (CR) in agreement with the B1ab(iii) + B2ab

(iii) IUCN's criteria (International Union for Conservation of

Nature, 2019). Further studies along the Crepori river basin are rec-

ommended to more clearly define the geographic distribution and

conservation status of H. auri.

3.2 | Morphometric analysis

The 23 normalized interlandmark distances, which were analysed by

PCA of the correlation matrix, produced six eigenvalues greater than

1 (6.24745, 4.95827, 2.23676, 1.56763, 1.51916 and 1.17899). The

first three PCs explained more than 58% of the variance in the data.

Only correlations (between variables and components) higher than 0.5

were taken as significant (Table 2). PCA based on IlD allowed graphic

segregation of the four species groups analysed. The multivariate ordi-

nation provided by the first two principal components allowed graphic

segregation of H. auri, H. argentinensis, H. misionera and H. mbigua,

almost without overlapping between them (Figure 11). H. auri was

basically located in the second quadrant (Figure 11), being character-

ized by the higher loadings for the 1–2, 1–3, 1–4, 2–3 and 2–4 ILDs

and 3–4, 4–5 (in minor way). These variables represent the head

shape (Table 2) and in particular 1–2 can be correlated to the snout,

denoting H. auri possessing a long snout when compared with

H. mbigua and H. argentinensis. Moreover, H. auri was defined by the

lowest loadings for the 3–6, 4–6, 5–6 IlDs (variables that represents

the relationship between the posterior part of the head and the origin

of the dorsal fin) but also lowest values for 5–8, 6–7, 7–8 IlDs

(belonging to the third box-truss and related to the dorsal-fin base

and origins of pectoral and ventral fins) (Figure 1). Conversely,

H. argentinensis was located in the fourth quadrant, being character-

ized by the highest loadings for the 3–6, 4–6 and 5–6 IlDs, higher

loadings for 5–8, 6–7 and 7–8 and the lowest values for 1–2, 1–3,

1–4, 2–3, and 2–4 IlDs (Figure 11). H. misionera basically plotted on

the first quadrant and showed the highest loadings for the 3–4 and

4–5 IlDs and higher loadings for the 1–2, 1–3, 1–4, 2–3 and 2–4 IlDs.

Finally, H. mbigua showed the highest loadings for the 8–10 IlDs

(which represents the distance between the insertion of the dorsal fin

and the first dorsal caudal fin ray insertion) (PC1–PC3, data not

shown). This species also showed the lowest values for the 3–4 and

4–5 IlDs, and lower values for 1–2, 1–3, 2–3, 1–4 and 2–4 but also

5–6, 5–8, 6–7 and 7–8 (Figure 11).

The data corresponding to the 23 PCs of the PCA were employed

to perform the DA. The DA for the 70 individuals of Hoplias produced

three significant canonical discrimination functions, where the first

two explained 86.4% of the total variance in the data (Wilks'

lambda = 0.003, P < 0.0001). Four groups were defined, and their

centroids and individuals were completely separated on both the first

and second discriminant functions (Figure 12). The DA correctly clas-

sified 100% of the Hoplias individuals according to the species groups

defined a priori, whereas the cross-validated analysis correctly classi-

fied 95.7 of the fish according to their body shape (Table 3). Accord-

ingly, group misclassifications were scarce, with a highest rate of

6.25% of H. auri misclassified as H. mbigua (Table 3). Four groups were

clearly defined, according to those defined a priori, and their centroids

and individuals were separated on both the first and second discrimi-

nant functions (Figure 12).

3.3 | Molecular species delimitation

The DNA barcode sequences resulted in an alignment of 651 nucleo-

tides, after being trimmed to remove the residuals in the tips. No

indels or stop codons along the reads were observed. The nucleotide

TABLE 2 Factor loadings and proportions of variance explained
by the first three principal components (PC1, PC2 and PC3) of a
principal component analysis (PCA) conducted on 23 morphometric
variables of four species of the Hoplias malabaricus species-group

PC1 PC2 PC3

1–2 0.01 0.73 0.29

1–3 0.37 0.75 �0.33

1–4 0.23 0.80 0.13

2–3 0.35 0.69 �0.37

3–4 0.86 0.27 0.11

3–5 0.01 0.06 0.72

3–6 0.64 �0.55 0.41

4–5 0.83 0.34 0.00

5–6 0.77 �0.56 0.09

5–7 0.22 �0.02 0.07

5–8 0.76 �0.30 0.05

6–7 0.81 �0.21 �0.13

7–8 0.83 �0.36 �0.14

7–9 �0.27 �0.52 �0.03

7–10 0.18 �0.55 �0.63

8–9 0.06 �0.45 �0.02

9–10 0.52 �0.02 �0.47

9–11 0.25 0.14 �0.33

10–11 0.58 0.15 �0.11

2–4 0.28 0.64 0.29

4–6 0.42 �0.57 0.35

6–8 0.42 0.29 �0.09

8–10 �0.58 �0.14 �0.44

% of variance 27.1 21.6 9.7

Cumulative variance 27.1 48.7 58.4

Note: Most important variables are represented in bold.
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base composition was T (30.3%), C (28.2%), A (23.2%), G (18.3%). The

BIN analysis revealed that all the individuals collected from the

Crepori River were clustered in a single clade and established a new

BIN (ADL3159), which is described herein as the new species, H. auri.

This BIN was closer to the H. malabaricus species-group than to

H. lacerdae and its nearest-neighbour (NN) was H. malabaricus

(ABZ3047), with a genetic distance of 3.0%, followed by H. mbigua

(ACO5223) with 3.2% of genetic divergence (Table 4). H. auri was

most divergent (7.7%) from H. argentinensis (AAZ3734) within the

H. malabaricus species-group and far distant (15.0%) from H. lacerdae

(ABW2258). The mean intraspecific genetic distance of H. auri was

0.001%. The specific status of the BIN ADL3159–H. auri was also

demonstrated with evidence from barcoding gap analysis (ABGD,

ASAP) and from coalescence simulation (GMYC) (Figure 13).

The mtDNA COI barcode profile of the holotype of H. auri is

deposited in BOLD Systems (Process ID AMTRA115-18) and was allo-

cated to the BIN: BOLD:ADL3159.

4 | DISCUSSION

Integrative taxonomy has contributed in recent years to unravel and

describe a large number of cryptic species of fishes (e.g., Allen

et al., 2016; Faria et al., 2021; Guimar~aes et al., 2019; Melo

et al., 2016). H. auri is formally described herein and has been previ-

ously reported as H. malabaricus (Silva, 2017) and assumed as a puta-

tive undescribed new species from the H. malabaricus species-group,

based on DNA barcoding distances (Guimar~aes, 2020). Herein, a com-

bination of morphological, morphometric, meristic, molecular and

morphogeometric evidence supports the evolutionary independence

of H. auri as a single specific lineage.

The mean interspecific COI divergence of H. auri to other mem-

bers of the H. malabaricus species-group varied from 3.0% to 7.7%,

which is in agreement with previous divergence values observed

among H. malabaricus species-group members (Cardoso et al., 2018).

F IGURE 11 (a) Score plot of first (PC1) and second (PC2) components of a principal component analysis on 23 interlandmark distances taken
on four species of the Hoplias malabaricus species complex: Hoplias auri (yellow triangles), Hoplias argentinensis (light-blue triangles), Hoplias
mbigua (blue diamonds), Hoplias misionera (pink squares). (b) Correlation between interlandmark distances and the first two principal components

F IGURE 12 Discriminant analysis of the four species of the
Hoplias malabaricus species complex: Hoplias auri (yellow triangles),
Hoplias argentinensis (light-blue triangles), Hoplias mbigua (blue
diamonds), Hoplias misionera (pink squares). Black squares indicate
group centroid location
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The distances between H. auri and its NN H. malabaricus (3.0%) and

H. mbigua (3.2%) are the smallest in the species pairs of the

H. malabaricus group. Conversely, NN distance values of 9.08% and

5.61% separated H. auri from H. argentinensis (Rosso et al., 2018) and

H. misionera (Rosso et al., 2016). Altogether, the clustering of all indi-

viduals of the new species in a single BIN (ADL3159) and the mono-

phyly of this cluster supported with the barcoding gap (ABGD, ASAP)

and Bayesian inference of the evolutionary lineage history (GMYC)

are strong molecular evidence for the distinctiveness of H. auri. With

the available molecular evidence, it could be assumed that speciation

in the H. malabaricus complex may be driven under DNA barcoding

divergences below to 3.5%.

Traditional morphometrics are very conservative among species

of the H. malabaricus complex, where only few informative measures

can be outlined (Rosso et al., 2016, 2018). Indeed, no discrete ranges

of traditional morphometrics were able to discriminate H. auri from

known species of this group. Conversely, the application of Box-Truss

protocols based on anatomical landmarks has been crucial to solve

taxonomic conflicts on fishes at the morphotypes, populations and

species levels (Díaz de Astarloa et al., 2011; González Castro

et al., 2008, 2012, 2016; González-Castro & Díaz de Astarloa, 2017).

In particular, this morphogeometric approach has proved to be effec-

tive regarding the characterization of the shape and discrimination

among several species of Hoplias (Rosso et al., 2018). In this scenario,

H. auri was characterized by having a long snout (1–2 IlD) and

head (1–2, 1–3, 2–3, 1–4, 2–4 and 3–4 IlDs), dorsal fin closer to the

head (lower loadings of 3–6, 4–6 and 5–6 IlDs) and a slender body at

its mid-part (Box-Truss III; lower loadings of 5–6, 5–8, 6–7 and

7.8 IlDs).

The cumulative knowledge of the taxonomy of the H. malabaricus

group over recent years allows the revision of some characters pro-

posed in original diagnoses. The Y-shaped disposition of medial mar-

gins of dentaries was formerly claimed to be present solely in

H. misionera (Rosso et al., 2016). Later, revision of specimens of this

TABLE 3 Cross-validated discriminant analysis on scores of a principal component analysis (PCA) of 23 morphometric variables in four
species of the Hoplias malabaricus species-group

Predicted group membership

TotalHoplias mbigua Hoplias misionera Hoplias argentinensis Hoplias auri

Original Count H. mbigua 14 0 0 0 14

H. misionera 0 21 0 0 21

H. argentinensis 0 0 19 0 19

H. auri 0 0 0 16 16

% H. mbigua 100.0 0 0 0 100.0

H. misionera 0 100.0 0 0 100.0

H. argentinensis 0 0 100.0 0 100.0

H. auri 0 0 0 100.0 100.0

Cross-validated Count H. mbigua 14 0 0 0 14

H. misionera 0 20 0 1 21

H. argentinensis 0 0 18 1 19

H. auri 0 1 0 15 16

% H. mbigua 100.0 0 0 0 100.0

H. misionera 0 95.2 0 4.8 100.0

H. argentinensis 0 0 94.7 5.3 100.0

H. auri 0 6.3 0 93.8 100.0

TABLE 4 Mean genetic distances of the Kimura two-parameter (K2P) model between Hoplias clusters

Species Hoplias auri Hoplias misionera Hoplias argentinensis Hoplias malabaricus Hoplias mbigua Hoplias microlepis

H. auri

H. misionera 0.067

H. argentinensis 0.077 0.079

H. malabaricus 0.030 0.069 0.074

H. mbigua 0.032 0.068 0.080 0.043

H. microlepis 0.057 0.083 0.070 0.058 0.052

H. lacerdae 0.150 0.139 0.138 0.146 0.157 0.159
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F IGURE 13 Neighbour-joining tree of Hoplias auri and related species of the Hoplias malabaricus group. Grey indicates the new species. The
lateral bar indicates the partitions of species delimitation delimited through BIN, ABGD, ASAP and GMYC analysis. Values in branches indicate
the bootstrap values
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species from different basins to those belonging to the type descrip-

tion (Guimar~aes et al., 2021) allowed recognition that this character

was variable where some specimens of H. misionera also presented

the characteristic V-shaped disposition of the H. malabaricus group.

Here, a new species of the H. malabaricus group is presented with its

specimens presenting either a V-shaped or a Y-shaped disposition.

These results demonstrate that the disposition of medial margins of

dentaries lacks taxonomic value other than discriminating species of

the H. malabaricus group (V- or Y-shaped) from the H. lacerdae group

(parallel) as proposed earlier (Oyakawa, 1990). Similarly, the conspicu-

ous brown bands observed in dentaries of H. mbigua (Azpelicueta

et al., 2015) can also be found in some specimens of H. microlepis,

H. misionera and H. auri.

Overall, taxonomic identification of species from the

H. malabaricus group can be first approached by the disposition of the

final series of vertical scales on the caudal-fin base. This character dis-

criminates H. misionera, with a marked curve disposition of these

scales, from all the remaining species. Those species with a nearly

straight disposition of these scales can be further discriminated by

means of meristic counts in two groups: the low count group and the

high count group (Rosso et al., 2018). Interestingly, H. misionera, which

occupied a basal position in the COI-based phylogeny of this group

(Cardoso et al., 2018), covers almost the entire range of lateral line

scales (38–43) of both groups (37–40 in low count and 40–46 in high

count). For details see the key provided.

4.1 | Key to the species of the Hoplias malabaricus
group

1a Last vertical series of scales on caudal-fin base

curved…...................................................................................Hoplias misionera.

1b Last vertical series of scales on caudal-fin base nearly

straight…….............................................................................................................2

2a Thirty-seven to 40 scales on the lateral line, 38–41 vertebrae

(low count group sensu Rosso et al., 2018)………………...........................….3

2b Forty to 46 scales on the lateral line, 42–43 vertebrae (high

count group sensu Rosso et al., 2018) .....………………………………………….4

3a Snout width 21.71–24.93, mean 23.31, iii-iv unbranched anal

fin rays, ii-iv, 12–15 caudal-fin rays and 38–39 vertebrae..

………………………………………………….………………………………..H. auri sp. nov.

3b Snout width 24.51–31.03, mean 27.95, ii unbranched anal fin

rays, ii,14–15 caudal-fin rays and 39–41 vertebrae……………………..

…………………………………………………………………………………...H. malabaricus.

4a Twenty-two to 24 scales around caudal peduncle……..………….

………...………………………………………………………………………..… H. microlepis.

4b Twenty scales around caudal peduncle ………………………………..5

5a Five distinctive transverse brown bands in the lower jaw, dorsal pro-

file of head concave……………………………………………………………………..H. mbigua

5b No distinctive transverse brown bands in the lower jaw, dorsal

profile of head straight..………………………………………………………………..….6

6a Forty-one to 44 scales on the lateral line, snout width less than

25% of head length……………………………………………………H. argentinensis.

6b Forty or 41 scales on the lateral line, snout width more than 29%

of head length………………………………………………………………………..…H. teres.

4.2 | Comparative material

Hoplias aimara: French Guiana: MNHN A-9968 (dry mount),

1, 770 mm SL, holotype; Cayenne.

Hoplias argentinensis: All from Argentina. Holotype: UNMDP

4417, 302 mm SL. Santa Fe Province: Río Paraná Basin: Río Coronda,

31�50.10S, 60�51.480W; J. J. Rosso, E. Mabragaña & M. González-Cas-

tro, 3 Dec 2015. Paratypes: Buenos Aires Province: UNMDP

492, 1, 410 mm SL; UNMDP 502, 1, 170 mm SL; UNMDP

503, 1, 145 mm SL; and UNMDP 504, 1, 159 mm SL; Ascensi�on: Río

Paraná Basin: Río Rojas; J. J. Rosso et al., 10 Dec 2010. — CFA-IC

3825, 1, 215 mm SL; Junín: Laguna G�omez; J. R. Miranda et al.,

30 Sep 2014. — CFA-IC 4364, 2, 125–188 mm SL; Río de La Plata,

Punta Indio wetlands; S. Bogan, 22 Mar 2015. — CFA-IC 4355,

1, 140 mm SL; Río Paraná Basin, Cañada Arias; S. Bogan, 21 Mar

2015. — CFA-IC 1741, 1, 138 mm SL; Arroyo El Destino; L. Protogino

et al., 19 Jan 2007. — CFA-IC 2452, 1, 105 mm SL; Río Paraná; J. M.

Meluso & S. Bogan, 4 Feb 2013. — CFA-IC 4665, 1, 315 mm SL; Río

de La Plata; J. Meluso et al., 6 Jul 2015. — MLP 6586, 1, 202 mm SL;

Punta Lara; M. Galván & E. Martín, 27 Jun 1960. Entre Ríos Province:

UNMDP 1279, 1, 240 mm SL; Embalse Salto Grande; J. J. Rosso &

E. Mabragaña, 12 Sep 2011. — UNMDP 1370, 1, 309 mm SL and

UNMDP 1371, 1, 265 mm SL; Río Paraná-Guazú, Delta of Río Paraná;

J. J. Rosso et al., 7 Oct 2011. — UNMDP 1595, 1, 98 mm SL; Arroyo

Bergara; J. J. Rosso & E. Mabragaña, 9 Sep 2011. — UNMDP 2452,

1, 202 mm SL and UNMDP 2453, 1, 203 mm SL; Río Paraná basin:

Laguna El Pescado: J. J. Rosso & E. Mabragaña, 11 Nov 2012.

— UNMDP 2565, 1, 134 mm SL; Río Paraná Basin: Arroyo Nogoyá;

J. J. Rosso & E. Mabragaña, 10 Nov 2012. — UNMDP 2616,

1, 116 mm SL; Río Uruguay Basin: Arroyo Ayuí; J. J. Rosso &

E. Mabragaña, 14 Nov 2012. — CFA-IC-3480, 1, 116 mm SL; Arroyo

Urquiza; A. Miquelarena et al., 18 Nov 2005. — CFA-IC 5812,

1, 190 mm SL; Arroyo El Tigre; H. L�opez et al., 17 Aug 2010. Santa Fé

Province: Río Paraná Basin: UNMDP 3867, 1, 177 mm SL; Arroyo

Leyes; J. J. Rosso et al., 25 Apr 2015. — UNMDP 4416, 1, 342 mm SL;

UNMDP 4423, 1, 239 mm SL; UNMDP 4425, 1, 203 mm SL; UNMDP

4426, 1, 206 mm SL; UNMDP 4427, 1, 314 mm SL; and UNMDP

4428, 1, 351 mm SL; Río Coronda: collected with the holotype.

— CFA-IC-3976, 1, 220 mm SL; Río Carcaraña; Y. P. Cardoso et al.,

24 Nov 2014. C�ordoba Province: MLP 11302, 1, 87 mm SL; Río Pri-

mero, before Capilla de los Remedios; 24 Jul 1939. Santiago del

Estero Province: — CFA-IC 5537, 1, 134 mm SL; Embalse Tacañitas,

J. Montoya-Burgos et al., 8 Nov 2015. — CFA-IC 5519, 2, 124–

165 mm SL; Río Dulce; J. Montoya-Burgos et al., 8 Nov 2015.

TUCUMÁN PROVINCE: — CFA-IC 5655, 1, 90 mm SL; Río Vipos;

J. Montoya-Burgos et al., 11 Nov 2015. Misiones Province: Río

Uruguay Basin: CFA-IC-4414, 1, 165 mm SL; Arroyo Dorado;

S. Bogan & J. M. Meluso, 4 May 2015. — UNMDP 4837, 1, 176 mm

SL; Arroyo Fortaleza; J. J. Rosso et al., 8 Mar 2017.

GUIMARÃES ET AL. 439FISH
 10958649, 2022, 2, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1111/jfb.14953 by U
niversidade Federal D

o O
este, W

iley O
nline L

ibrary on [16/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Hoplias australis: Argentina: Misiones: UNMDP 1991, 1, 43.9 mm

SL; Río Uruguay Basin: Arroyo Ramos. — UNMDP 2721, 1, 271 mm

SL; UNMDP 2722, 1, 220 mm SL; UNMDP 2723, 1, 171 mm SL; and

UNMDP 2724, 1, 166 mm SL; Río Yabotí Basin: Arroyo Oveja Negra.

Hoplias curupira: Brazil: Pará State: LBP 67349, 1, 153 mm SL;

Itaituba: Rio Tapaj�os.

Hoplias intermedius: Brazil: Sergipe State: LBP 48702, 1, 231 mm

SL; Gararu: Rio S~ao Francisco.

Hoplias lacerdae: Argentina: Misiones: Río Uruguay Basin:

UNMDP 570, 1, 346 mm SL; UNMDP 571, 1, 350 mm SL; and

UNMDP 594, 1, 163 mm SL; Arroyo Ramos. — UNMDP 2725,

1, 192 mm SL and UNMDP 2735, 1, 244 mm SL; Río Yabotí.

Hoplias malabaricus: MHNN 773, 1, holotype of Erythrinus macro-

don; Brazil: Bahia: Lake Almada; photograph and x-rays. — MNHN

4409, 1, 108 mm SL; MNHN 4421, 3, 175–237 mm SL; MNHN

A-9746, 1, 93 mm SL; MNHN A-9747, 1, 183 mm SL; and MNHN

A-9748, 1, 245 mm SL; syntypes of Macrodon tareira; Brazil and French

Guiana.— USNM 1112, 1, 111 mm SL, syntype of Macrodon ferox;

Trinidad Island; photographs and x-rays. — ZMB 3515, 1, 167 mm SL;

lectotype; South America, probably Suriname. — ZMB 33059, 1, 69 mm

SL; paralectotype; South America, probably Suriname.

Hoplias cf. malabaricus: Brazil: Pará State: Tapaj�os basin: INPA

32735, 1, 168 mm SL, Jacareacanga: Rio Marupá, C. Duarte, 07 May

2008; INPA 32646, 1, 58.8 mm SL, Jacareacanga: Rio Pacu, C. Duarte,

07 Aug 2008; INPA 7001, 1, 240 mm SL, Itaituba: Rio Jamanxim,

L. Rapp Py-Daniel & J. Zuanon, 23 Oct, 1991; INPA 34256, 2, 64.14–

88.63, Rur�opolis: Rio Cupari, F. Ribeiro & W. Pedroza, 18 Sep 2009;

Amazonas State: INPA 26158, 2, 62.6–122 mm SL, Rio Barati, L. Rapp

Py-Daniel et al., 03 Jul 2006.

Hoplias mbigua: CI-FML 6763, 1, 224 mm SL, holotype; Argentina:

Misiones: Río Paraná, Nemesio Parma. – CI-FML 6764, 2,

224–248 mm SL; collected with the holotype. — LGE-P 314, 1, 237 mm

SL and LGE-P 435, 1, 154 mm SL; Río Paraná, Garupá. — LGE-P

316, 1, 229 mm SL; Río Paraná, mouth of Arroyo Yabebiry. — LGE-P

317, 1, 302 mm SL; Río Paraná, Toma de Agua Eriday.

Hoplias microlepis: BMNH 1864.1.26.221, 1, 278 mm SL, lecto-

type; Panamá: Río Chagres. — BMNH 1864.1.26.222, 1, 225 mm SL

and BMNH 1864.1.26.309, 1, 176 mm SL, paralectotypes; Panamá:

Río Chagres. — BMNH.1860.6.16.128, 1, 293 mm SL; and

BMNH.1860.6.16.154, 1, 124 mm SL, paralectotypes; Ecuador. — LBP

18503, 1, 215 mm SL; Panamá: Atlantic Drainage: Río Llano Sucio.

Hoplias misionera: Argentina: — UNMDP 574, 1, 164 mm SL, holo-

type; Misiones: Río Uruguay Basin: stream tributary to Río Acaraguá.

— UNMDP 1868, 1, 40 mm SL; UNMDP 1950, 1, 49 mm SL;

and UNMDP 1951, 1, 50 mm SL; Formosa: Río Paraguay: Laguna

Oca. — UNMDP 1983, 1, 75 mm SL; Chaco: Río Paraná. — UNMDP

3320, 1, 174 mm SL; UNMDP 3391, 1, 149 mm SL; and UNMDP

3392, 1, 104 mm SL; same locality as holotype. — UNMDP 3321,

1, 142 mm SL; and UNMDP 3322, 1, 148 mm SL; Formosa: Río

Paraguay: Riacho Saladillo. — UNMDP 3327, 1, 171 mm SL; UNMDP

3328, 1, 146 mm SL; and UNMDP 3329, 1, 134 mm SL; Formosa: Río

Paraguay: Riacho Salado. — UNMDP 3371, 1, 154 mm SL; and

UNMDP 3376, 1, 165 mm SL; Formosa: Río Paraguay: Riacho Mbiguá.

BRAZIL: LBP 32184–32,186, 3, 77–155 mm SL; S~ao Paulo: marginal

lagoon: Paraná River.

Hoplias teres: MNHN-4377-1, 1, 121 mm SL and MNHN-4377-2,

1, 116 mm SL, syntypes; Venezuela: Lago Maracaibo.
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